A291882 a(n) is the least number k such that sigma(k+n) = Sum_{j=1..i} sigma(d_j), where d_j are the divisors of k.
1, 2, 10, 1183, 4514, 1179, 38, 3325, 9, 126855, 290, 261, 18, 6, 1930, 104771947, 344, 58, 326, 117, 270754, 13875, 32, 45, 32, 74, 70, 38, 18, 21200761175, 206, 1179, 86, 16, 56, 357, 85, 18, 124, 39948225, 361, 171, 1118, 63, 122, 38, 30, 239267, 482, 1367247
Offset: 0
Keywords
Examples
Divisors of 1183 are 1, 7, 13, 91, 169 and 1183: sigma(1) + sigma(7) + sigma(13) + sigma(91) + sigma(169) + sigma(1183)= 1 + 8 + 14 + 112 + 183 + 1464 = 1782 = sigma(1183+3) and 1183 is the least number to have this property.
Links
- Paolo P. Lava, Terms from a(1) to a(300) ('?' for unknown values)
Programs
-
Maple
with(numtheory): P:=proc(q) local a,b,j,k,n; for n from 0 to q do for k from 1 to q do a:=divisors(k); b:=add(sigma(a[j]),j=1..nops(a)); if sigma(k+n)=b then print(k); break; fi; od; od; end: P(10^6);
-
PARI
a(n) = my(k = 1); while(sigma(k+n) != sumdiv(k, d, sigma(d)), k++); k; \\ Michel Marcus, Sep 19 2017
Extensions
a(15), a(29), a(39), a(75), a(84), a(89), a(111) from Giovanni Resta, Sep 15 2017
Comments