A291883 Number T(n,k) of symmetrically unique Dyck paths of semilength n and height k; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 5, 3, 1, 0, 1, 9, 11, 4, 1, 0, 1, 19, 31, 19, 5, 1, 0, 1, 35, 91, 69, 29, 6, 1, 0, 1, 71, 250, 252, 127, 41, 7, 1, 0, 1, 135, 690, 855, 540, 209, 55, 8, 1, 0, 1, 271, 1863, 2867, 2117, 1005, 319, 71, 9, 1, 0, 1, 527, 5017, 9339, 8063, 4411, 1705, 461, 89, 10, 1
Offset: 0
Examples
: T(4,2) = 5: /\ /\ /\/\ /\ /\ /\/\/\ : /\/\/ \ /\/ \/\ /\/ \ / \/ \ / \ : Triangle T(n,k) begins: 1; 0, 1; 0, 1, 1; 0, 1, 2, 1; 0, 1, 5, 3, 1; 0, 1, 9, 11, 4, 1; 0, 1, 19, 31, 19, 5, 1; 0, 1, 35, 91, 69, 29, 6, 1; 0, 1, 71, 250, 252, 127, 41, 7, 1; 0, 1, 135, 690, 855, 540, 209, 55, 8, 1; ...
Links
- Alois P. Heinz, Rows n = 0..140, flattened
Crossrefs
Programs
-
Maple
b:= proc(x, y, k) option remember; `if`(x=0, z^k, `if`(y
0, b(x-1, y-1, k), 0)) end: g:= proc(x, y, k) option remember; `if`(x=0, z^k, `if`(y>0, g(x-2, y-1, k), 0)+ g(x-2, y+1, max(y+1, k))) end: T:= n-> (p-> seq(coeff(p, z, i)/2, i=0..n))(b(2*n, 0$2)+g(2*n, 0$2)): seq(T(n), n=0..14); -
Mathematica
b[x_, y_, k_] := b[x, y, k] = If[x == 0, z^k, If[y < x - 1, b[x - 1, y + 1, Max[y + 1, k]], 0] + If[y > 0, b[x - 1, y - 1, k], 0]]; g[x_, y_, k_] := g[x, y, k] = If[x == 0, z^k, If[y > 0, g[x - 2, y - 1, k], 0] + g[x - 2, y + 1, Max[y + 1, k]]]; T[n_] := Function[p, Table[Coefficient[p, z, i]/2, {i, 0, n}]][b[2*n, 0, 0] + g[2*n, 0, 0]]; Table[T[n], {n, 0, 14}] // Flatten (* Jean-François Alcover, Jun 03 2018, from Maple *)
-
Python
from sympy.core.cache import cacheit from sympy import Poly, Symbol, flatten z=Symbol('z') @cacheit def b(x, y, k): return z**k if x==0 else (b(x - 1, y + 1, max(y + 1, k)) if y
0 else 0) @cacheit def g(x, y, k): return z**k if x==0 else (g(x - 2, y - 1, k) if y>0 else 0) + g(x - 2, y + 1, max(y + 1, k)) def T(n): return 1 if n==0 else [i//2 for i in Poly(b(2*n, 0, 0) + g(2*n, 0, 0)).all_coeffs()[::-1]] print(flatten(map(T, range(15)))) # Indranil Ghosh, Sep 06 2017