A291910 Number of 4-cycles in the n X n rook complement graph.
0, 0, 9, 576, 6900, 44100, 196245, 686784, 2023056, 5232600, 12224025, 26310240, 52936884, 100663836, 182452725, 317318400, 532407360, 865571184, 1368508041, 2110550400, 3183182100, 4705372980, 6829824309, 9750223296, 13709610000, 19009965000, 26023131225
Offset: 1
Keywords
Links
- Eric Weisstein's World of Mathematics, Graph Cycle
- Eric Weisstein's World of Mathematics, Rook Complement Graph
- Index entries for linear recurrences with constant coefficients, signature (9, -36, 84, -126, 126, -84, 36, -9, 1).
Programs
-
Mathematica
Table[(-2 + n) (-1 + n)^2 n^2 (-4 + 5 n - 4 n^2 + n^3)/8, {n, 20}] LinearRecurrence[{9, -36, 84, -126, 126, -84, 36, -9, 1}, {0, 0, 9, 576, 6900, 44100, 196245, 686784, 2023056}, 30] CoefficientList[Series[-((3 x^2 (3 + 165 x + 680 x^2 + 660 x^3 + 165 x^4 + 7 x^5))/(-1 + x)^9), {x, 0, 20}], x]
Formula
a(n) = (n-2)*(n-1)^2*n^2*(-4 + 5*n - 4*n^2 + n^3)/8.
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9).
G.f.: -((3 x^3 (3 + 165 x + 680 x^2 + 660 x^3 + 165 x^4 + 7 x^5))/(-1 + x)^9).