cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A291916 Number of (not necessarily maximal) cliques in the n-Fibonacci cube graph.

Original entry on oeis.org

4, 6, 11, 19, 34, 60, 106, 186, 325, 565, 978, 1686, 2896, 4958, 8463, 14407, 24466, 41456, 70102, 118322, 199369, 335401, 563426, 945194, 1583644, 2650230, 4430291, 7398331, 12342850, 20573220, 34262338, 57013866, 94800781, 157517533, 261545778, 433993662
Offset: 1

Views

Author

Eric W. Weisstein, Sep 05 2017

Keywords

Crossrefs

Cf. A022137, A001629 (maximum and maximal cliques).

Programs

  • Mathematica
    LinearRecurrence[{3, -1, -3, 1, 1}, {4, 6, 11, 19, 34}, 20]
    Table[((25 - 19 Sqrt[5]) (1 - Sqrt[5])^n + (1 + Sqrt[5])^n (25 + 19 Sqrt[5]))/(25 2^(n + 1)) + n LucasL[n + 1]/5 + 1, {n, 20}] // Expand
    CoefficientList[Series[(-4 + 6 x + 3 x^2 - 4 x^3 - 2 x^4)/((-1 + x) (-1 + x + x^2)^2), {x, 0, 20}], x]
    Table[(n LucasL[n + 1] + LucasL[n + 4] - Fibonacci[n - 3])/5 + 1, {n, 40}] (* Eric W. Weisstein, Nov 29 2017 *)

Formula

a(n) = 3*a(n-1) - a(n-2) - 3*a(n-3) + a(n-4) + a(n-5).
G.f.: (x (-4 + 6 x + 3 x^2 - 4 x^3 - 2 x^4))/((-1 + x) (-1 + x + x^2)^2).
a(n) = (n*Lucas(n + 1) + Lucas(n + 4) - Fibonacci(n - 3))/5 + 1. - Ehren Metcalfe, Oct 16 2017