A291916 Number of (not necessarily maximal) cliques in the n-Fibonacci cube graph.
4, 6, 11, 19, 34, 60, 106, 186, 325, 565, 978, 1686, 2896, 4958, 8463, 14407, 24466, 41456, 70102, 118322, 199369, 335401, 563426, 945194, 1583644, 2650230, 4430291, 7398331, 12342850, 20573220, 34262338, 57013866, 94800781, 157517533, 261545778, 433993662
Offset: 1
Keywords
Links
- Eric Weisstein's World of Mathematics, Clique
- Eric Weisstein's World of Mathematics, Fibonacci Cube Graph
- Index entries for linear recurrences with constant coefficients, signature (3,-1,-3,1,1).
Programs
-
Mathematica
LinearRecurrence[{3, -1, -3, 1, 1}, {4, 6, 11, 19, 34}, 20] Table[((25 - 19 Sqrt[5]) (1 - Sqrt[5])^n + (1 + Sqrt[5])^n (25 + 19 Sqrt[5]))/(25 2^(n + 1)) + n LucasL[n + 1]/5 + 1, {n, 20}] // Expand CoefficientList[Series[(-4 + 6 x + 3 x^2 - 4 x^3 - 2 x^4)/((-1 + x) (-1 + x + x^2)^2), {x, 0, 20}], x] Table[(n LucasL[n + 1] + LucasL[n + 4] - Fibonacci[n - 3])/5 + 1, {n, 40}] (* Eric W. Weisstein, Nov 29 2017 *)
Formula
a(n) = 3*a(n-1) - a(n-2) - 3*a(n-3) + a(n-4) + a(n-5).
G.f.: (x (-4 + 6 x + 3 x^2 - 4 x^3 - 2 x^4))/((-1 + x) (-1 + x + x^2)^2).
a(n) = (n*Lucas(n + 1) + Lucas(n + 4) - Fibonacci(n - 3))/5 + 1. - Ehren Metcalfe, Oct 16 2017