cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A292184 a(n) = A291937(3^n).

Original entry on oeis.org

2, 4, 28, 460, 10774, 80195104, 2894790054826, 122274810705200924689300, 17750307143185064814011639706060016204
Offset: 0

Views

Author

Paul D. Hanna, Oct 05 2017

Keywords

Comments

G.f. of A291937 equals: Sum_{n=-oo..+oo} n * x^n * (1 - x^n)^n.
It is surprising that these terms seem to be all positive and increasing so rapidly.

Examples

			These terms are located at positions 3^n of sequence A291937, whose g.f. begins:
G(x) = 1 + (2)*x + (4)*x^3 - 3*x^4 + 6*x^5 - 3*x^6 + 8*x^7 - 15*x^8 + (28)*x^9 - 24*x^10 + 12*x^11 + 14*x^13 - 48*x^14 + 96*x^15 - 95*x^16 + 18*x^17 + 55*x^18 + 20*x^19 - 180*x^20 + 232*x^21 - 120*x^22 + 24*x^23 - 35*x^24 + 76*x^25 - 168*x^26 + (460)*x^27 - 580*x^28 + 30*x^29 + 515*x^30 +...
such that
G(x) = Sum_{n=-oo..+oo} n * x^n * (1 - x^n)^n.
Also,
G(x) = Sum_{n=-oo..+oo} n^2 * x^(2*n) * (1 - x^n)^(n-1).
		

Crossrefs

Cf. A291937.

A293129 L.g.f.: Sum_{n=-oo..+oo} (x - x^(2*n-1))^(2*n-1) / (2*n-1).

Original entry on oeis.org

1, 4, 1, 15, 1, 12, 40, 16, 1, 77, 92, 24, 101, 28, 204, 373, 1, 36, 667, 40, 575, 689, 826, 48, 393, 1582, 1379, 1937, 590, 60, 6101, 64, 1, 5227, 3129, 9515, 1826, 76, 4390, 12404, 11341, 84, 18361, 88, 5875, 46320, 7844, 96, 1553, 33133, 38886, 50883, 25741, 108, 25507, 44993, 82265, 91449, 15835, 120, 150162, 124, 19376, 390653, 1, 104015, 29394, 136, 242217, 249506, 507789, 144, 210831, 148, 33079, 647187, 593029, 711482, 47101, 160
Offset: 1

Views

Author

Paul D. Hanna, Oct 11 2017

Keywords

Comments

Compare l.g.f. to: Sum_{n=-oo..+oo, n<>0} (x - x^n)^n / n = -log(1-x).
Here l.g.f. L(x) = Sum_{n>=1} a(n) * x^(2*n-1) / (2*n-1).
a(2^n + 1) = 1 for n >= 1 (conjecture).

Examples

			L.g.f.: L(x) = x + 4*x^3/3 + x^5/5 + 15*x^7/7 + x^9/9 + 12*x^11/11 + 40*x^13/13 + 16*x^15/15 + x^17/17 + 77*x^19/19 + 92*x^21/21 + 24*x^23/23 + 101*x^25/25 + 28*x^27/27 + 204*x^29/29 + 373*x^31/31 + x^33/33 + 36*x^35/35 + 667*x^37/37 + 40*x^39/39 + 575*x^41/41 + 689*x^43/43 + 826*x^45/45 + 48*x^47/47 + 393*x^49/49 + 1582*x^51/51 + 1379*x^53/53 + 1937*x^55/55 + 590*x^57/57 + 60*x^59/59 +...
such that L(x) = Sum_{n=-oo..+oo} (x - x^(2*n-1))^(2*n-1) / (2*n-1).
The coefficient of x^(2^n+1)/(2^n+1) in L(x) for n>=1 begins:
[4, 1, 1, 1, 1, 1, 1, 1, 1, ...],
and it appears that a(k) = 1 only at k = 1 and k = 2^n + 1 (n>=1).
We may write L(x) = P(x) + Q(x) where
P(x) = (x - x) + (x - x^3)^3/3 + (x - x^5)^5/5 + (x - x^7)^7/7 + (x - x^9)^9/9 + (x - x^11)^11/11 + (x - x^13)^13/13 + (x - x^15)^15/15 + (x - x^17)^17/17 + (x - x^19)^19/19 + (x - x^21)^21/21 +...+ (x - x^(2*n-1))^(2*n-1)/(2*n-1) +...
Q(x) = x/(1 - x^2) + x^9/(3*(1 - x^4)^3) + x^25/(5*(1 - x^6)^5) + x^49/(7*(1 - x^8)^7) + x^81/(9*(1 - x^10)^9) + x^121/(11*(1 - x^12)^11) + x^169/(13*(1 - x^14)^13) +...+ x^((2*n-1)^2) / ((2*n-1)*(1 - x^(2*n))^(2*n-1)) +...
Explicitly,
P(x) = x^3/3 - 4*x^5/5 + 8*x^7/7 - 11*x^9/9 + x^11/11 + 14*x^13/13 + x^15/15 - 50*x^17/17 + 58*x^19/19 + x^21/21 + x^23/23 - 54*x^25/25 + x^27/27 - 28*x^29/29 + 311*x^31/31 - 340*x^33/33 + x^35/35 + 75*x^37/37 + x^39/39 - 81*x^41/41 + 345*x^43/43 - 44*x^45/45 + x^47/47 - 1427*x^49/49 + 1531*x^51/51 - 52*x^53/53 + 496*x^55/55 - 1253*x^57/57 + x^59/59 + 1343*x^61/61 + x^63/63 - 2924*x^65/65 +...
Q(x) = x + 3*x^3/3 + 5*x^5/5 + 7*x^7/7 + 12*x^9/9 + 11*x^11/11 + 26*x^13/13 + 15*x^15/15 + 51*x^17/17 + 19*x^19/19 + 91*x^21/21 + 23*x^23/23 + 155*x^25/25 + 27*x^27/27 + 232*x^29/29 + 62*x^31/31 + 341*x^33/33 + 35*x^35/35 + 592*x^37/37 + 39*x^39/39 + 656*x^41/41 + 344*x^43/43 + 870*x^45/45 + 47*x^47/47 + 1820*x^49/49 + 51*x^51/51 + 1431*x^53/53 + 1441*x^55/55 + 1843*x^57/57 + 59*x^59/59 + 4758*x^61/61 + 63*x^63/63 + 2925*x^65/65 +...
The coefficient of x^(2^n+1)/(2^n+1) in P(x) for n>=1 begins:
[1, -4, -11, -50, -340, -2924, -169032, -33445208, -21619038032, 1 - A293599(n), ...].
The coefficient of x^(2^n+1)/(2^n+1) in Q(x) for n>=1 begins:
[3, 5, 12, 51, 341, 2925, 169033, 33445209, 21619038033, ..., A293599(n), ...].
		

Crossrefs

Cf. A293597 (P(x)), A293598 (Q(x)), A293599, A291937.

Programs

  • PARI
    {a(n) = my(P,Q,Ox = O(x^(2*n+1)));
    P = sum(m=1,n+1, (x - x^(2*m-1) +Ox)^(2*m-1) / (2*m-1) );
    Q = sum(m=1,sqrtint(n+1), x^((2*m-1)^2) / ( (2*m-1) * (1 - x^(2*m) +Ox)^(2*m-1) ) );
    (2*n-1)*polcoeff(P + Q, 2*n-1)}
    for(n=1,80,print1(a(n),", "))

Formula

L.g.f.: Sum_{n=-oo..+oo} (x + x^(2*n-1))^(2*n-1) / (2*n-1) - note the plus sign.
L.g.f.: -log(1-x) - Sum_{n=-oo..+oo, n<>0} (x - x^(2*n))^(2*n) / (2*n).
L.g.f.: L(x) = P(x) + Q(x) where
P(x) = Sum_{n>=1} (x - x^(2*n-1))^(2*n-1) / (2*n-1),
Q(x) = Sum_{n>=1} x^((2*n-1)^2) / ( (2*n-1) * (1 - x^(2*n))^(2*n-1) ).

A356774 Coefficients in the power series expansion of A(x) = Sum_{n=-oo..+oo} n * x^n * (1 - x^n)^(n-2).

Original entry on oeis.org

1, 4, 7, 11, 16, 17, 29, 21, 46, 21, 67, 22, 92, 1, 151, -23, 154, 22, 191, -118, 407, -175, 277, 23, 326, -363, 946, -643, 436, 282, 497, -1199, 1948, -1019, 701, -47, 704, -1519, 3641, -3127, 862, 1759, 947, -5301, 7036, -2943, 1129, -1187, 1226, -2149, 10252
Offset: 1

Views

Author

Paul D. Hanna, Sep 22 2022

Keywords

Comments

Related identities:
(I.1) 0 = Sum_{n=-oo..+oo} n * x^n * (1 - x^n)^(n-1).
(I.2) 0 = Sum_{n=-oo..+oo} n*(n+1)/2 * x^(2*n) * (1 - x^n)^(n-1).
(I.3) 0 = Sum_{n=-oo..+oo} n*(n+1)*(n+2)/3! * x^(3*n) * (1 - x^n)^(n-1).
(I.4) 0 = Sum_{n=-oo..+oo} n*(n+1)*(n+2)*(n+3)/4! * x^(4*n) * (1 - x^n)^(n-1).
(I.5) 0 = Sum_{n=-oo..+oo} binomial(n+k-1, k) * x^(k*n) * (1 - x^n)^(n-1) for fixed positive integer k.
(I.6) 0 = Sum_{n=-oo..+oo} (-1)^n * n * x^(n^2) / (1 - x^n)^(n+1).
(I.7) 0 = Sum_{n=-oo..+oo} (-1)^n * n*(n+1)/2 * x^(n*(n+1)) / (1 - x^(n+1))^(n+2).
(I.8) 0 = Sum_{n=-oo..+oo} (-1)^n * n*(n+1)*(n+2)/3! * x^(n*(n+2)) / (1 - x^(n+2))^(n+3).
(I.9) 0 = Sum_{n=-oo..+oo} (-1)^n * n*(n+1)*(n+2)*(n+3)/4! * x^(n*(n+3)) / (1 - x^(n+3))^(n+4).
(I.10) 0 = Sum_{n=-oo..+oo} (-1)^n * binomial(n+k-1, k) * x^(n*(n+k-1)) / (1 - x^(n+k-1))^(n+k) for fixed positive integer k.
(I.11) 0 = Sum_{n=-oo..+oo} n*(n-1)/2 * x^n * (1 - x^n)^(n-2).
(I.12) 0 = Sum_{n=-oo..+oo} (-1)^n * n*(n+1)/2 * x^(n*(n+1)) / (1 - x^n)^(n+2).

Examples

			G.f.: A(x) = x + 4*x^2 + 7*x^3 + 11*x^4 + 16*x^5 + 17*x^6 + 29*x^7 + 21*x^8 + 46*x^9 + 21*x^10 + 67*x^11 + 22*x^12 + 92*x^13 + x^14 + 151*x^15 + ...
where
A(x) = ... - 3*x^(-3)*(1 - x^(-3))^(-5) - 2*x^(-2)*(1 - x^(-2))^(-4) - x^(-1)*(1 - x^(-1))^(-3) + 0 + x/(1-x) + 2*x^2 + 3*x^3*(1 - x^3) + 4*x^4*(1 - x^4)^2 + 5*x^5*(1 - x^5)^3 + ... + n*x^n*(1 - x^n)^(n-2) + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A = sum(m=-n-1,n+1, if(m==0,0, m * x^m * (1 - x^m +x*O(x^n))^(m-2) )) );
    polcoeff(A,n)}
    for(n=1,100,print1(a(n),", "))

Formula

G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies:
(1) A(x) = Sum_{n=-oo..+oo} n * x^n * (1 - x^n)^(n-2).
(2) A(x) = Sum_{n=-oo..+oo} n * x^(2*n) * (1 - x^n)^(n-2).
(3.a) A(x) = Sum_{n=-oo..+oo} n*(n+1)/2 * x^n * (1 - x^n)^(n-2).
(3.b) A(x) = Sum_{n=-oo..+oo} n^2 * x^n * (1 - x^n)^(n-2).
(4) A(x) = Sum_{n=-oo..+oo} -(-1)^n * n * x^(n^2) / (1 - x^n)^(n+2).
(5) A(x) = Sum_{n=-oo..+oo} -(-1)^n * n * x^(n*(n+1)) / (1 - x^n)^(n+2).
(6.a) A(x) = Sum_{n=-oo..+oo} (-1)^n * n*(n-1)/2 * x^(n*(n+1)) / (1 - x^n)^(n+2).
(6.b) A(x) = Sum_{n=-oo..+oo} (-1)^n * n^2 * x^(n*(n+1)) / (1 - x^n)^(n+2).

A356775 Coefficients in the power series expansion of A(x) = Sum_{n=-oo..+oo} n*(n+1)/2 * x^(2*n) * (1 - x^n)^(n-2).

Original entry on oeis.org

1, 1, 5, 1, 11, 1, 21, -8, 36, 1, 22, 1, 85, -89, 137, 1, -23, 1, 302, -349, 287, 1, 23, -24, 456, -944, 1177, 1, -903, 1, 2113, -2078, 970, -559, 709, 1, 1331, -4003, 4293, 1, -3323, 1, 9153, -10694, 2301, 1, 5869, -48, -4774, -11474, 20294, 1, -7334, -14783
Offset: 2

Views

Author

Paul D. Hanna, Sep 22 2022

Keywords

Comments

Related identities:
(I.1) 0 = Sum_{n=-oo..+oo} n * x^n * (1 - x^n)^(n-1).
(I.2) 0 = Sum_{n=-oo..+oo} n*(n+1)/2 * x^(2*n) * (1 - x^n)^(n-1).
(I.3) 0 = Sum_{n=-oo..+oo} n*(n+1)*(n+2)/3! * x^(3*n) * (1 - x^n)^(n-1).
(I.4) 0 = Sum_{n=-oo..+oo} n*(n+1)*(n+2)*(n+3)/4! * x^(4*n) * (1 - x^n)^(n-1).
(I.5) 0 = Sum_{n=-oo..+oo} binomial(n+k-1, k) * x^(k*n) * (1 - x^n)^(n-1) for fixed positive integer k.
(I.6) 0 = Sum_{n=-oo..+oo} (-1)^n * n * x^(n^2) / (1 - x^n)^(n+1).
(I.7) 0 = Sum_{n=-oo..+oo} (-1)^n * n*(n+1)/2 * x^(n*(n+1)) / (1 - x^(n+1))^(n+2).
(I.8) 0 = Sum_{n=-oo..+oo} (-1)^n * n*(n+1)*(n+2)/3! * x^(n*(n+2)) / (1 - x^(n+2))^(n+3).
(I.9) 0 = Sum_{n=-oo..+oo} (-1)^n * n*(n+1)*(n+2)*(n+3)/4! * x^(n*(n+3)) / (1 - x^(n+3))^(n+4).
(I.10) 0 = Sum_{n=-oo..+oo} (-1)^n * binomial(n+k-1, k) * x^(n*(n+k-1)) / (1 - x^(n+k-1))^(n+k) for fixed positive integer k.
(I.11) 0 = Sum_{n=-oo..+oo} (n-1)*n*(n+1)/6 * x^(2*n) * (1 - x^n)^(n-2).
(I.12) 0 = Sum_{n=-oo..+oo} (-1)^n * (n-1)*n*(n+1)/6 * x^(n^2) / (1 - x^n)^(n+2).

Examples

			G.f.: A(x) = x^2 + x^3 + 5*x^4 + x^5 + 11*x^6 + x^7 + 21*x^8 - 8*x^9 + 36*x^10 + x^11 + 22*x^12 + x^13 + 85*x^14 - 89*x^15 + 137*x^16 + ...
where
A(x) = ... + 3*x^(-6)*(1 - x^(-3))^(-5) + 1*x^(-4)*(1 - x^(-2))^(-4) + 0*x^(-2) + 0 + 1*x^2/(1-x) + 3*x^4 + 6*x^6*(1 - x^3) + 10*x^8*(1 - x^4)^2 + 15*x^10*(1 - x^5)^3 + ... + n*(n+1)/2 * x^(2*n)*(1 - x^n)^(n-2) + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A = sum(m=-n-1,n+1, if(m==0,0, m*(m+1)/2 * x^(2*m) * (1 - x^m +x*O(x^n))^(m-2) )) );
    polcoeff(A,n)}
    for(n=2,100,print1(a(n),", "))

Formula

G.f. A(x) = Sum_{n>=2} a(n)*x^n satisfies:
(1) A(x) = Sum_{n=-oo..+oo} n*(n+1)/2 * x^(2*n) * (1 - x^n)^(n-2).
(2) A(x) = Sum_{n=-oo..+oo} n*(n+1)/2 * x^(3*n) * (1 - x^n)^(n-2).
(3) A(x) = Sum_{n=-oo..+oo} n*(n+1)*(n+2)/6 * x^(2*n) * (1 - x^n)^(n-2).
(4) A(x) = Sum_{n=-oo..+oo} (-1)^n * n*(n-1)/2 * x^(n*(n-1)) / (1 - x^n)^(n+2).
(5) A(x) = Sum_{n=-oo..+oo} (-1)^n * n*(n-1)/2 * x^(n^2) / (1 - x^n)^(n+2).
(6) A(x) = Sum_{n=-oo..+oo} -(-1)^n * n*(n-1)*(n-2)/6 * x^(n^2) / (1 - x^n)^(n+2).

A357156 Coefficients in the power series expansion of A(x) = Sum_{n=-oo..+oo} n*(n+1)*(n+2)/6 * x^(3*n) * (1 - x^n)^(n-2).

Original entry on oeis.org

1, 1, 1, 6, 1, 1, 16, 1, 1, 22, 1, 1, 71, -63, 1, 127, 1, -158, 211, 1, 1, -117, 176, 1, 496, -923, 1, 1277, 1, -1727, 1002, 1, 1681, -2021, 1, 1, 1821, -1027, 1, 912, 1, -7721, 11146, 1, 1, -12571, 736, 15401, 4846, -17016, 1, -6389, 27457, -20956, 7316, 1, 1, -6486, 1, 1, 22177
Offset: 3

Views

Author

Paul D. Hanna, Sep 22 2022

Keywords

Comments

Related identities:
(I.1) 0 = Sum_{n=-oo..+oo} n * x^n * (1 - x^n)^(n-1).
(I.2) 0 = Sum_{n=-oo..+oo} n*(n+1)/2 * x^(2*n) * (1 - x^n)^(n-1).
(I.3) 0 = Sum_{n=-oo..+oo} n*(n+1)*(n+2)/3! * x^(3*n) * (1 - x^n)^(n-1).
(I.4) 0 = Sum_{n=-oo..+oo} n*(n+1)*(n+2)*(n+3)/4! * x^(4*n) * (1 - x^n)^(n-1).
(I.5) 0 = Sum_{n=-oo..+oo} binomial(n+k-1, k) * x^(k*n) * (1 - x^n)^(n-1) for fixed positive integer k.
(I.6) 0 = Sum_{n=-oo..+oo} (-1)^n * n * x^(n^2) / (1 - x^n)^(n+1).
(I.7) 0 = Sum_{n=-oo..+oo} (-1)^n * n*(n+1)/2 * x^(n*(n+1)) / (1 - x^(n+1))^(n+2).
(I.8) 0 = Sum_{n=-oo..+oo} (-1)^n * n*(n+1)*(n+2)/3! * x^(n*(n+2)) / (1 - x^(n+2))^(n+3).
(I.9) 0 = Sum_{n=-oo..+oo} (-1)^n * n*(n+1)*(n+2)*(n+3)/4! * x^(n*(n+3)) / (1 - x^(n+3))^(n+4).
(I.10) 0 = Sum_{n=-oo..+oo} (-1)^n * binomial(n+k-1, k) * x^(n*(n+k-1)) / (1 - x^(n+k-1))^(n+k) for fixed positive integer k.
(I.11) 0 = Sum_{n=-oo..+oo} (n-1)*n*(n+1)*(n+2)/24 * x^(3*n) * (1 - x^n)^(n-2).
(I.12) 0 = Sum_{n=-oo..+oo} (-1)^n * (n+1)*n*(n-1)*(n-2)/24 * x^(n*(n-1)) / (1 - x^n)^(n+2).

Examples

			G.f.: A(x) = x^3 + x^4 + x^5 + 6*x^6 + x^7 + x^8 + 16*x^9 + x^10 + x^11 + 22*x^12 + x^13 + x^14 + 71*x^15 - 63*x^16 + x^17 + 127*x^18 + ...
where
A(x) = ... - 4*x^(-12)*(1 - x^(-4))^(-6) - 1*x^(-9)*(1 - x^(-3))^(-5) + 0*x^(-6) + 0*x^(-3) + 0 + 1*x^3/(1-x) + 4*x^6 + 10*x^9*(1 - x^3) + 20*x^12*(1 - x^4)^2 + 35*x^15*(1 - x^5)^3 + ... + n*(n+1)*(n+2)/6 * x^(3*n)*(1 - x^n)^(n-2) + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A = sum(m=-n-1,n+1, if(m==0,0, m*(m+1)*(m+2)/6 * x^(3*m) * (1 - x^m +x*O(x^n))^(m-2) )) );
    polcoeff(A,n)}
    for(n=3,100,print1(a(n),", "))

Formula

G.f. A(x) = Sum_{n>=3} a(n)*x^n satisfies:
(1) A(x) = Sum_{n=-oo..+oo} n*(n+1)*(n+2)/6 * x^(3*n) * (1 - x^n)^(n-2).
(2) A(x) = Sum_{n=-oo..+oo} n*(n+1)*(n+2)/6 * x^(4*n) * (1 - x^n)^(n-2).
(3) A(x) = Sum_{n=-oo..+oo} n*(n+1)*(n+2)*(n+3)/24 * x^(3*n) * (1 - x^n)^(n-2).
(4) A(x) = Sum_{n=-oo..+oo} -(-1)^n * n*(n-1)*(n-2)/6 * x^(n*(n-2)) / (1 - x^n)^(n+2).
(5) A(x) = Sum_{n=-oo..+oo} -(-1)^n * n*(n-1)*(n-2)/6 * x^(n*(n-1)) / (1 - x^n)^(n+2).
(6) A(x) = Sum_{n=-oo..+oo} (-1)^n * n*(n-1)*(n-2)*(n-3)/24 * x^(n*(n-1)) / (1 - x^n)^(n+2).

A357157 Coefficients in the power series expansion of A(x) = Sum_{n=-oo..+oo} n*(n+1)*(n+2)*(n+3)/24 * x^(4*n) * (1 - x^n)^(n-2).

Original entry on oeis.org

1, 1, 1, 1, 7, 1, 1, 1, 22, 1, 1, -19, 57, 1, 1, 1, 22, 1, 1, 1, 303, -349, 1, 1, 463, 1, -593, 1, 793, 1, 1, -2204, 2584, 1, 1, 1, -2287, 1, 3082, 1, 3004, -8084, 1, 1, 14465, -3674, -14299, 1, 6189, 1, 22276, -24023, -2056, 1, 1, 1, 18714, 1, 1, -34985, 24305, -60059, 87517, 1, 20350
Offset: 4

Views

Author

Paul D. Hanna, Sep 22 2022

Keywords

Comments

Related identities:
(I.1) 0 = Sum_{n=-oo..+oo} n * x^n * (1 - x^n)^(n-1).
(I.2) 0 = Sum_{n=-oo..+oo} n*(n+1)/2 * x^(2*n) * (1 - x^n)^(n-1).
(I.3) 0 = Sum_{n=-oo..+oo} n*(n+1)*(n+2)/3! * x^(3*n) * (1 - x^n)^(n-1).
(I.4) 0 = Sum_{n=-oo..+oo} n*(n+1)*(n+2)*(n+3)/4! * x^(4*n) * (1 - x^n)^(n-1).
(I.5) 0 = Sum_{n=-oo..+oo} binomial(n+k-1, k) * x^(k*n) * (1 - x^n)^(n-1) for fixed positive integer k.
(I.6) 0 = Sum_{n=-oo..+oo} (-1)^n * n * x^(n^2) / (1 - x^n)^(n+1).
(I.7) 0 = Sum_{n=-oo..+oo} (-1)^n * n*(n+1)/2 * x^(n*(n+1)) / (1 - x^(n+1))^(n+2).
(I.8) 0 = Sum_{n=-oo..+oo} (-1)^n * n*(n+1)*(n+2)/3! * x^(n*(n+2)) / (1 - x^(n+2))^(n+3).
(I.9) 0 = Sum_{n=-oo..+oo} (-1)^n * n*(n+1)*(n+2)*(n+3)/4! * x^(n*(n+3)) / (1 - x^(n+3))^(n+4).
(I.10) 0 = Sum_{n=-oo..+oo} (-1)^n * binomial(n+k-1, k) * x^(n*(n+k-1)) / (1 - x^(n+k-1))^(n+k) for fixed positive integer k.
(I.11) 0 = Sum_{n=-oo..+oo} (n-1)*n*(n+1)*(n+2)*(n+3)/120 * x^(4*n) * (1 - x^n)^(n-2).
(I.12) 0 = Sum_{n=-oo..+oo} (-1)^n * (n+1)*n*(n-1)*(n-2)*(n-3)/120 * x^(n*(n-2)) / (1 - x^n)^(n+2).

Examples

			G.f.: A(x) = x^4 + x^5 + x^6 + x^7 + 7*x^8 + x^9 + x^10 + x^11 + 22*x^12 + x^13 + x^14 - 19*x^15 + 57*x^16 + x^17 + x^18 + x^19 + 22*x^20 + ...
where
A(x) = ... + 5*x^(-20)*(1 - x^(-5))^(-7) + 1*x^(-16)*(1 - x^(-4))^(-6) + 0*x^(-12) + 0*x^(-8) + 0*x^(-4) + 0 + 1*x^4/(1-x) + 5*x^8 + 15*x^12*(1 - x^3) + 35*x^16*(1 - x^4)^2 + 70*x^20*(1 - x^5)^3 + ... + n*(n+1)*(n+2)*(n+3)/24 * x^(4*n)*(1 - x^n)^(n-2) + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A = sum(m=-n-1,n+1, if(m==0,0, m*(m+1)*(m+2)*(m+3)/24 * x^(4*m) * (1 - x^m +x*O(x^n))^(m-2) )) );
    polcoeff(A,n)}
    for(n=4,100,print1(a(n),", "))

Formula

G.f. A(x) = Sum_{n>=4} a(n)*x^n satisfies:
(1) A(x) = Sum_{n=-oo..+oo} n*(n+1)*(n+2)*(n+3)/24 * x^(4*n) * (1 - x^n)^(n-2).
(2) A(x) = Sum_{n=-oo..+oo} n*(n+1)*(n+2)*(n+3)/24 * x^(5*n) * (1 - x^n)^(n-2).
(3) A(x) = Sum_{n=-oo..+oo} n*(n+1)*(n+2)*(n+3)*(n+4)/120 * x^(4*n) * (1 - x^n)^(n-2).
(4) A(x) = Sum_{n=-oo..+oo} (-1)^n * n*(n-1)*(n-2)*(n-3)/24 * x^(n*(n-3)) / (1 - x^n)^(n+2).
(5) A(x) = Sum_{n=-oo..+oo} (-1)^n * n*(n-1)*(n-2)*(n-3)/24 * x^(n*(n-2)) / (1 - x^n)^(n+2).
(6) A(x) = Sum_{n=-oo..+oo} -(-1)^n * n*(n-1)*(n-2)*(n-3)*(n-4)/120 * x^(n*(n-2)) / (1 - x^n)^(n+2).

A292177 G.f.: Limit_{K->oo} Sum_{n=-oo..+oo} x^(n-K) * (1 - x^n + n*(n+1)/6 * x^(n+K))^n.

Original entry on oeis.org

1, 0, 4, 0, 5, 0, 20, -24, 35, 0, 0, 0, 84, -160, 200, 0, -150, 0, 460, -560, 286, 0, 140, -200, 455, -1440, 2100, 0, -2180, 0, 3840, -3080, 969, -2240, 2730, 0, 1330, -5824, 5320, 0, -4235, 0, 16874, -21840, 2300, 0, 18440, -784, -20175, -16320, 37310, 0, -945, -42240, 49560, -25080, 4495, 0, 7560, 0, 5456, -50400, 102528, -120120, 40810, 0, 135660, -52624, -221690, 0, 278256, 0, 9139, -364000, 232750, -99792, 211120, 0, -106680, -100440, 12341, 0, 537992, -628320, 14190, -129920, 563420, 0, -195015, -480480, 591100, -168640, 18424, -1240320, 2138640, 0, -925120, -268224, -803250, 0
Offset: 2

Views

Author

Paul D. Hanna, Sep 10 2017

Keywords

Comments

Compare the g.f. to: Sum_{n=-oo..+oo} x^n * (1 - x^n)^n = 0.

Examples

			G.f.: A(x) = x^2 + 4*x^4 + 5*x^6 + 20*x^8 - 24*x^9 + 35*x^10 + 84*x^14 - 160*x^15 + 200*x^16 - 150*x^18 + 460*x^20 - 560*x^21 + 286*x^22 + 140*x^24 - 200*x^25 + 455*x^26 - 1440*x^27 + 2100*x^28 - 2180*x^30 + 3840*x^32 - 3080*x^33 + 969*x^34 - 2240*x^35 + 2730*x^36 + 1330*x^38 - 5824*x^39 + 5320*x^40 +...
such that the g.f. equals the limit of the sum, as K tends to infinity,
S(K) = Sum_{n=-oo..+oo} x^(n-K) * (1 - x^n + n*(n+1)/6 * x^(n+K))^n.
Illustration of the limit.
S(1) = x^2 + 1/3*x^3 + 112/27*x^4 + 113/81*x^5 + 467/81*x^6 - 938/729*x^7 +...
S(2) = x^2 + 13/3*x^4 + 175/27*x^6 + 1550/81*x^8 - 24*x^9 + 2777/81*x^10 +...
S(3) = x^2 + 4*x^4 + 1/3*x^5 + 5*x^6 + 4/3*x^7 + 544/27*x^8 - 77/3*x^9 +...
S(4) = x^2 + 4*x^4 + 16/3*x^6 + 64/3*x^8 - 24*x^9 + 904/27*x^10 +...
S(5) = x^2 + 4*x^4 + 5*x^6 + 1/3*x^7 + 20*x^8 - 68/3*x^9 + 35*x^10 +...
S(6) = x^2 + 4*x^4 + 5*x^6 + 61/3*x^8 - 24*x^9 + 109/3*x^10 - 5/3*x^12 +...
S(7) = x^2 + 4*x^4 + 5*x^6 + 20*x^8 - 71/3*x^9 + 35*x^10 + 4/3*x^11 +...
S(8) = x^2 + 4*x^4 + 5*x^6 + 20*x^8 - 24*x^9 + 106/3*x^10 + 4/3*x^12 +...
S(9) = x^2 + 4*x^4 + 5*x^6 + 20*x^8 - 24*x^9 + 35*x^10 + 1/3*x^11 +...
...
At powers of 2, a(2^n) begins:
[1, 4, 20, 200, 3840, 102528, 8437440, 5275875200, 5635011683840, 2075681844543566848, 671078483184128826885120, ...].
		

Crossrefs

Cf. A291937.

Programs

  • PARI
    {a(n) = my(A=1,K=n); A = sum(m=-sqrtint(2*n+9), 2*n+1, x^(m-K) * (1 - x^m +m*(m+1)/6*x^(m+K) + O(x^(2*n+2)) )^m  ); polcoeff(A, n)}
    for(n=2, 80, print1(a(n), ", "))

Formula

G.f.: Limit_{K->oo} Sum_{n=-oo..+oo} -(-1)^n * x^(n^2-n-K) / (1 - x^n + n*(n-1)/6 * x^K)^n.
a(p) = 0 for odd prime p (conjecture).

A357159 a(n) = coefficient of x^n in the power series A(x) such that: 0 = Sum_{n=-oo..+oo, n<>0} n * x^n * (1 - x^n)^(n-1) * A(x)^n, starting with a(0) = -1.

Original entry on oeis.org

-1, -2, -4, -8, -8, -6, 40, 132, 400, 504, 76, -4960, -18528, -56998, -94176, -58896, 617216, 2911128, 9741760, 19739472, 21657312, -75073186, -483271024, -1800924184, -4274295720, -6374947674, 7150661892, 81254492928, 345397065128, 937137978804, 1717431001440
Offset: 0

Views

Author

Paul D. Hanna, Oct 03 2022

Keywords

Comments

Related identity: 0 = Sum_{n=-oo..+oo, n<>0} n * x^n * (1 - x^n)^(n-1), which holds when 0 < |x| < 1.
Note that Sum_{n=-oo..+oo, n<>0} n * x^n * (1 - x^n)^(n-1) * A(x)^n is to be taken as the sum of two infinite series, P(x) + Q(x), where P(x) = Sum_{n=-oo..-1} n * x^n * (1 - x^n)^(n-1) * A(x)^n and Q(x) = Sum_{n=+1..+oo} n * x^n * (1 - x^n)^(n-1) * A(x)^n. The g.f. A(x) of this sequence satisfies the condition that P(x) + Q(x) = 0. The series Sum_{n=-oo..+oo, n<>0} n * x^n * (1 - x^n)^(n-1) * A(x)^n converges to zero when 0 < |x| < r where r < 1 is the radius of convergence of g.f. A(x). Upon reversing the sign of the index n, and so taking the same sum in reverse order from +oo to -oo, we obtain the equivalent series Sum_{n=-oo..+oo, n<>0} (-1)^n * n * x^(n^2) / ((1 - x^n)^(n+1) * A(x)^n), the convergence of which is more clearly seen to hold when 0 < |x| < r < 1.

Examples

			G.f.: A(x) = -1 - 2*x - 4*x^2 - 8*x^3 - 8*x^4 - 6*x^5 + 40*x^6 + 132*x^7 + 400*x^8 + 504*x^9 + 76*x^10 - 4960*x^11 - 18528*x^12 - 56998*x^13 - 94176*x^14 - 58896*x^15 + 617216*x^16 + ...
such that
0 = ... - 3*(x*A(x))^(-3)/(1 - x^(-3))^4 - 2*(x*A(x))^(-2)/(1 - x^(-2))^3 - (x*A(x))^(-1)/(1 - x^(-1))^2 + 0 + x*A(x) + 2*(x*A(x))^2*(1 - x^2) + 3*(x*A(x))^3*(1 - x^3)^2 + 4*(x*A(x))^4*(1 - x^4)^3 + 5*(x*A(x))^5*(1 - x^5)^4 + ... + n*(x*A(x))^n*(1 - x^n)^(n-1) + ...
SPECIFIC VALUES.
A(1/4) = -1.8892616570712410815999763792198265088...
A(1/5) = -1.6334109911560757412636074394753603214...
A(1/6) = -1.4868349923582400870800926746579742411...
We can illustrate the sum in the definition at x = 1/4.
The sum
0 = Sum_{n=-oo..+oo, n<>0} n * 1/4^n * (1 - 1/4^n)^(n-1) * A(1/4)^n
simplifies somewhat to
0 = Sum_{n=-oo..+oo, n<>0} n * (4^n - 1)^(n-1) * A(1/4)^n / 4^(n^2),
which can be split up into parts P and Q.
Let P denote the sum from -oo to -1, which can be written as
P = Sum_{n>1} (-1)^n * n * 4^n / ((4^n - 1)^(n+1) * A(1/4)^n),
and let Q denote the sum from +1 to +oo:
Q = Sum_{n>1} n * (4^n - 1)^(n-1) * A(1/4)^n / 4^(n^2).
Substituting A(1/4) = -1.8892616570712410815999763792198265088... yields
P = 0.237905890404564510234837963872429856... and
Q = -0.237905890404564510234837963872429856...
so that P + Q = 0.
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[-1]); for(i=1,n, A=concat(A,0);
    A[#A] = -polcoeff( sum(n=-#A,#A, if(n==0,0, n * x^n * (1 - x^n +x*O(x^#A) )^(n-1) * Ser(A)^n )),#A)/2 );A[n+1]}
    for(n=0,30,print1(a(n),", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n)*x^n, with a(0) = -1, satisfies the following relations.
(1) 0 = Sum_{n=-oo..+oo, n<>0} n * x^n * (1 - x^n)^(n-1) * A(x)^n.
(2) 0 = Sum_{n=-oo..+oo, n<>0} n * x^n * (1 - x^n/A(x))^(n-1).
(3) 0 = Sum_{n=-oo..+oo, n<>0} n * x^n * (A(x) - x^n)^(n-1).
(4) 0 = Sum_{n=-oo..+oo, n<>0} (-1)^n * n * x^(n^2) / ( (1 - x^n)^(n+1) * A(x)^n ).
(5) 0 = Sum_{n=-oo..+oo, n<>0} (-1)^n * n * x^(n^2) * A(x)^n / (A(x) - x^n)^(n+1).
(6) 0 = Sum_{n=-oo..+oo, n<>0} (-1)^n * n * x^(n^2) * A(x)^n / (1 - x^n*A(x))^(n+1).
Showing 1-8 of 8 results.