A291961 Numbers n > 1 such that 2^lambda(n) == 1 (mod n^2), where lambda(n) is the Carmichael lambda function (A002322).
1093, 3279, 3511, 7651, 10533, 14209, 17555, 22953, 31599, 42627, 45643, 52665, 99463, 136929, 157995, 228215, 298389, 410787, 684645, 2053935, 3837523, 11512569, 19187615, 26862661, 34537707, 49887799, 57562845, 80587983, 134313305, 149663397, 172688535, 241763949, 249438995, 349214593, 402939915, 448990191, 748316985, 1047643779, 1208819745, 1746072965, 2244950955, 3142931337, 5238218895
Offset: 1
Keywords
Programs
-
Mathematica
Select[Range[2, 100000], Divisible[2^CarmichaelLambda[#] - 1, #^2] &]
-
PARI
isok(n) = Mod(2, n^2)^lcm(znstar(n)[2]) == 1; \\ Michel Marcus, Sep 11 2017
Extensions
a(32)-a(36) from Michel Marcus, Sep 11 2017
a(37)-a(41) from Michel Marcus, Sep 12 2017
a(42)-a(43) from Michel Marcus, Sep 14 2017
Comments