A291978 Triangle read by rows, T(n, k) = (-1)^(n-k)*n!*[t^k]([x^n] exp(x*t)/(1 + log(1+x))) for 0<=k<=n.
1, 1, 1, 3, 2, 1, 14, 9, 3, 1, 88, 56, 18, 4, 1, 694, 440, 140, 30, 5, 1, 6578, 4164, 1320, 280, 45, 6, 1, 72792, 46046, 14574, 3080, 490, 63, 7, 1, 920904, 582336, 184184, 38864, 6160, 784, 84, 8, 1, 13109088, 8288136, 2620512, 552552, 87444, 11088, 1176, 108, 9, 1
Offset: 0
Examples
Triangle starts: [1] [1, 1] [3, 2, 1] [14, 9, 3, 1] [88, 56, 18, 4, 1] [694, 440, 140, 30, 5, 1] [6578, 4164, 1320, 280, 45, 6, 1] [72792, 46046, 14574, 3080, 490, 63, 7, 1] [920904, 582336, 184184, 38864, 6160, 784, 84, 8, 1]
Crossrefs
Programs
-
Maple
T_row := proc(n) exp(x*t)/(1 + log(1+x)): series(%, x, n+1): seq(coeff((-1)^(n-k)*n!*coeff(%,x,n),t,k), k=0..n) end: seq(T_row(n), n=0..9);
-
Mathematica
T[n_, k_] := Binomial[n, n - k]*Sum[j!*Abs[StirlingS1[n - k, j]], {j, 0, n - k}]; Flatten[Table[T[n, k], {n, 0, 9}, {k, 0, n}]] (* Detlef Meya, May 12 2024 *)
Formula
T(n, k) = binomial(n, n - k)*Sum_{j=0..n - k} j!*abs(Stirling1(n - k, j)). - Detlef Meya, May 12 2024