cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A291982 a(n) = Euler(n, n+1) * 2^valuation(n+1, 2), where Euler(n, x) denotes the Euler polynomial.

Original entry on oeis.org

1, 3, 6, 161, 380, 9251, 68922, 9718545, 24721272, 1140755269, 14712346550, 1678097074579, 13104139232340, 889926827467887, 16319429252249970, 10286621696853755681, 27076409740571217392, 2427916115944458451025, 57728302956904672126062
Offset: 0

Views

Author

Peter Luschny, Sep 22 2017

Keywords

Comments

Conjecture: If n >= 2 is even then n*(n+1) divides a(n).
This conjecture was inspired by Vladimir Shevelev's conjecture in A291897.

Crossrefs

Programs

  • Maple
    A291982 := n -> euler(n, n+1)*2^(padic[ordp](n+1, 2)):
    seq(A291982(n), n=0..18);
  • Mathematica
    Table[2^IntegerExponent[n+1, 2] EulerE[n, n+1], {n, 1, 15}]
  • Python
    from sympy import euler
    def A291982(n): return euler(n,n+1)*(n+1 & -n-1) # Chai Wah Wu, Jul 07 2022

Formula

a(n) = Euler(n, n+1)*2^A007814(n+1).