A292022 a(n) = 4*n*(n^2 + 2).
12, 48, 132, 288, 540, 912, 1428, 2112, 2988, 4080, 5412, 7008, 8892, 11088, 13620, 16512, 19788, 23472, 27588, 32160, 37212, 42768, 48852, 55488, 62700, 70512, 78948, 88032, 97788, 108240, 119412, 131328, 144012, 157488, 171780, 186912, 202908, 219792, 237588
Offset: 1
Links
- Eric Weisstein's World of Mathematics, Crossed Prism Graph.
- Eric Weisstein's World of Mathematics, Wiener Index.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Programs
-
Mathematica
Table[4 n (n^2 + 2), {n, 50}] LinearRecurrence[{4, -6, 4, -1}, {12, 48, 132, 288}, 20] CoefficientList[Series[(12 (1 + x^2))/(-1 + x)^4, {x, 0, 20}], x]
Formula
a(n) = 4*n*(n^2 + 2).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
G.f.: 12*x*(1 + x^2)/(-1 + x)^4.
From Elmo R. Oliveira, Aug 09 2025: (Start)
E.g.f.: 4*x*(3 + 3*x + x^2)*exp(x).
Comments