A292027 a(n) = a(n-7) + a(n-11), starting a(0)=a(1)=...= a(10) = 1.
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 5, 5, 5, 5, 7, 7, 7, 8, 9, 9, 9, 12, 12, 12, 13, 16, 16, 16, 20, 21, 21, 22, 28, 28, 28, 33, 37, 37, 38, 48, 49, 49, 55, 65, 65, 66, 81, 86, 86, 93, 113, 114, 115, 136, 151, 151, 159, 194, 200, 201, 229, 264, 265, 274
Offset: 0
References
- Kenneth H. Rosen, Discrete Mathematics and its Applications, McGraw-Hill, 2012, 501-503.
Links
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,1,0,0,0,1).
Programs
-
Java
import java.util.Arrays; public class IntegerSequences { public static void main(String[] args) { int j = 7; int k = 11; // Set N to the number of terms you would like to generate. int N = 200; long[] G = new long[N]; for(int i=0; i
-
Mathematica
LinearRecurrence[{0,0,0,0,0,0,1,0,0,0,1},{1,1,1,1,1,1,1,1,1,1,1},80] (* Harvey P. Dale, Oct 09 2018 *)
Formula
G.f.: (x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)/(1 - x^7 - x^11). - R. J. Mathar and N. J. A. Sloane, Nov 10 2017