cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A292037 Expansion of Product_{k>=1} ((1 + x^(2*k-1)) / (1 - x^(2*k-1)))^k.

Original entry on oeis.org

1, 2, 2, 6, 10, 16, 30, 46, 78, 124, 196, 306, 470, 724, 1086, 1644, 2438, 3608, 5304, 7734, 11232, 16196, 23270, 33206, 47250, 66846, 94232, 132280, 184966, 257720, 357768, 495090, 682702, 938760, 1286668, 1758708, 2397012, 3258340, 4417570, 5974204, 8059824
Offset: 0

Views

Author

Vaclav Kotesovec, Sep 08 2017

Keywords

Comments

Convolution of A263140 and A035528 (with a(0)=1).

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[((1+x^(2*k-1))/(1-x^(2*k-1)))^k, {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(-1/24 - Pi^4/(1344*Zeta(3)) + Pi^2 * n^(1/3) / (8*(7*Zeta(3))^(1/3)) + 3*(7*Zeta(3))^(1/3) * n^(2/3)/4) * A^(1/2) * (7*Zeta(3))^(11/72) / (2^(5/4) * sqrt(3*Pi) * n^(47/72)), where A is the Glaisher-Kinkelin constant A074962.