cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A292047 Triangle read by rows: T(n,k) = (-1)^k * T(n-k,k-1) + T(n-k,k) with T(0,0) = 1 for 0 <= k <= A003056(n).

Original entry on oeis.org

1, 0, -1, 0, -1, 0, -1, -1, 0, -1, -1, 0, -1, -2, 0, -1, -2, 1, 0, -1, -3, 1, 0, -1, -3, 2, 0, -1, -4, 3, 0, -1, -4, 4, 1, 0, -1, -5, 5, 1, 0, -1, -5, 7, 2, 0, -1, -6, 8, 3, 0, -1, -6, 10, 5, 0, -1, -7, 12, 6, -1, 0, -1, -7, 14, 9, -1, 0, -1, -8, 16, 11, -2, 0, -1
Offset: 0

Views

Author

Seiichi Manyama, Sep 08 2017

Keywords

Examples

			First few rows are:
  1;
  0, -1;
  0, -1;
  0, -1, -1;
  0, -1, -1;
  0, -1, -2;
  0, -1, -2, 1;
  0, -1, -3, 1;
  0, -1, -3, 2;
  0, -1, -4, 3;
  0, -1, -4, 4, 1.
		

Crossrefs

Row sums give A278399.
Columns 0-1 give A000007, (-1)*A000012.
Cf. A292049.

A292143 Triangle read by rows: T(n,k) = (-4)^(1 - k mod 2) * T(n-k,k-1) + T(n-k,k) with T(0,0) = 1 for 0 <= k <= A003056(n).

Original entry on oeis.org

1, 0, 1, 0, 1, 0, 1, -4, 0, 1, -4, 0, 1, -8, 0, 1, -8, -4, 0, 1, -12, -4, 0, 1, -12, -8, 0, 1, -16, -12, 0, 1, -16, -16, 16, 0, 1, -20, -20, 16, 0, 1, -20, -28, 32, 0, 1, -24, -32, 48, 0, 1, -24, -40, 80, 0, 1, -28, -48, 96, 16, 0, 1, -28, -56, 144, 16, 0, 1, -32
Offset: 0

Views

Author

Seiichi Manyama, Sep 09 2017

Keywords

Examples

			First few rows are:
  1;
  0, 1;
  0, 1;
  0, 1,  -4;
  0, 1,  -4;
  0, 1,  -8;
  0, 1,  -8,  -4;
  0, 1, -12,  -4;
  0, 1, -12,  -8;
  0, 1, -16, -12;
  0, 1, -16, -16, 16.
		

Crossrefs

Row sums give A292141.
Columns 0-1 give A000007, A000012.
Cf. A292049.

A382864 Triangle read by rows: T(n,k) = T(n-k,k-1) + T(n-k,k) with T(0,0) = 1 for 0 <= k <= A003056(n).

Original entry on oeis.org

1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 2, 0, 1, 2, 1, 0, 1, 3, 1, 0, 1, 3, 2, 0, 1, 4, 3, 0, 1, 4, 4, 1, 0, 1, 5, 5, 1, 0, 1, 5, 7, 2, 0, 1, 6, 8, 3, 0, 1, 6, 10, 5, 0, 1, 7, 12, 6, 1, 0, 1, 7, 14, 9, 1, 0, 1, 8, 16, 11, 2, 0, 1, 8, 19, 15, 3, 0, 1, 9, 21, 18, 5, 0, 1, 9, 24, 23, 7
Offset: 0

Views

Author

Seiichi Manyama, Apr 07 2025

Keywords

Examples

			First few rows are:
  1;
  0, 1;
  0, 1;
  0, 1, 1;
  0, 1, 1;
  0, 1, 2;
  0, 1, 2,  1;
  0, 1, 3,  1;
  0, 1, 3,  2;
  0, 1, 4,  3;
  0, 1, 4,  4, 1;
  0, 1, 5,  5, 1;
  0, 1, 5,  7, 2;
  0, 1, 6,  8, 3;
  0, 1, 6, 10, 5;
  0, 1, 7, 12, 6, 1;
  ...
		

Crossrefs

Row sums give A000009.
Columns 0..10 give A000007, A000012, A004526(n-1), A069905(n-3), A026810(n-6), A026811(n-10), A026812(n-15), A026813(n-21), A026814(n-28), A026815(n-36), A026816(n-45).

Formula

G.f. of column k: x^(k*(k+1)/2) / Product_{j=1..k} (1-x^j).
T(n,k) = |A292047(n,k)| = |A292049(n,k)|.
Showing 1-3 of 3 results.