cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A292086 Number T(n,k) of (unlabeled) rooted trees with n leaf nodes and without unary nodes such that k is the maximum of 1 and the node outdegrees; triangle T(n,k), n>=1, 1<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 3, 6, 2, 1, 0, 6, 17, 7, 2, 1, 0, 11, 47, 22, 7, 2, 1, 0, 23, 133, 72, 23, 7, 2, 1, 0, 46, 380, 230, 77, 23, 7, 2, 1, 0, 98, 1096, 751, 256, 78, 23, 7, 2, 1, 0, 207, 3186, 2442, 861, 261, 78, 23, 7, 2, 1, 0, 451, 9351, 8006, 2897, 887, 262, 78, 23, 7, 2, 1
Offset: 1

Views

Author

Alois P. Heinz, Sep 08 2017

Keywords

Examples

			:   T(4,2) = 2        :   T(4,3) = 2      : T(4,4) = 1 :
:                     :                   :            :
:       o       o     :      o       o    :     o      :
:      / \     / \    :     / \     /|\   :   /( )\    :
:     o   N   o   o   :    o   N   o N N  :  N N N N   :
:    / \     ( ) ( )  :   /|\     ( )     :            :
:   o   N    N N N N  :  N N N    N N     :            :
:  ( )                :                   :            :
:  N N                :                   :            :
:                     :                   :            :
Triangle T(n,k) begins:
  1;
  0,  1;
  0,  1,   1;
  0,  2,   2,   1;
  0,  3,   6,   2,  1;
  0,  6,  17,   7,  2,  1;
  0, 11,  47,  22,  7,  2, 1;
  0, 23, 133,  72, 23,  7, 2, 1;
  0, 46, 380, 230, 77, 23, 7, 2, 1;
  ...
		

Crossrefs

Columns k=1-10 give: A063524, A001190 (for n>1), A292229, A292230, A292231, A292232, A292233, A292234, A292235, A292236.
Row sums give A000669.
Limit of reversed rows gives A292087.

Programs

  • Maple
    b:= proc(n, i, v, k) option remember; `if`(n=0,
          `if`(v=0, 1, 0), `if`(i<1 or v<1 or n A(n, k)-`if`(k=1, 0, A(n, k-1)):
    seq(seq(T(n, k), k=1..n), n=1..15);
  • Mathematica
    b[n_, i_, v_, k_] := b[n, i, v, k] = If[n == 0, If[v == 0, 1, 0], If[i < 1 || v < 1 || n < v, 0, If[v == n, 1, Sum[Binomial[A[i, k] + j - 1, j]*b[n - i*j, i - 1, v - j, k], {j, 0, Min[n/i, v]}]]]];
    A[n_, k_] := A[n, k] = If[n < 2, n, Sum[b[n, n + 1 - j, j, k], {j, 2, Min[n, k]}]];
    T[n_, k_] := A[n, k] - If[k == 1, 0, A[n, k - 1]];
    Table[Table[T[n, k], {k, 1, n}], {n, 1, 15}] // Flatten (* Jean-François Alcover, Nov 07 2017, after Alois P. Heinz *)

Formula

T(n,k) = A292085(n,k) - A292085(n,k-1) for k>2, T(n,1) = A292085(n,1).