A292108 Iterate the map k -> (sigma(k) + phi(k))/2 starting at n; a(n) is the number of steps to reach either a fixed point or a fraction, or a(n) = -1 if neither of these two events occurs.
0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 2, 0, 3, 2, 1, 0, 1, 0, 2, 2, 1, 0, 4, 1, 2, 1, 4, 0, 2, 0, 1, 4, 3, 2, 1, 0, 3, 2, 1, 0, 9, 0, 2, 3, 1, 0, 7, 1, 1, 2, 1, 0, 8, 3, 2, 2, 1, 0, 3, 0, 8, 7, 1, 3, 2, 0, 1, 7, 6, 0, 1, 0, 3, 2, 4
Offset: 1
Keywords
Examples
Let f(k) = (sigma(k) + phi(k))/2. Under the action of f: 14 -> 15 -> 16 -> 39/2, taking 3 steps, so a(14) = 3. 21 -> 22 -> 23, a prime, in 2 steps, so a(21) = 2.
Links
- Hugo Pfoertner, Table of n, a(n) for n = 1..269
- Andrew R. Booker, Notes on (sigma + phi)/2
- Sean A. Irvine, Showing how the initial portions of some of these trajectories merge
- N. J. A. Sloane, Three (No, 8) Lovely Problems from the OEIS, Experimental Mathematics Seminar, Rutgers University, Oct 05 2017, Part I, Part 2, Slides. (Mentions this sequence)
- N. J. A. Sloane, "A Handbook of Integer Sequences" Fifty Years Later, arXiv:2301.03149 [math.NT], 2023, p. 14.
Programs
-
Mathematica
With[{i = 200}, Table[-1 + Length@ NestWhileList[If[! IntegerQ@ #, -1/2, (DivisorSigma[1, #] + EulerPhi@ #)/2] &, n, Nor[! IntegerQ@ #, SameQ@ ##] &, 2, i, -1] /. k_ /; k >= i - 1 -> -1, {n, 76}]] (* Michael De Vlieger, Sep 19 2017 *)
Formula
a(n) = 0 if n is 1 or a prime (these are fixed points).
a(n) = 1 if n>2 is a square or twice a square, since these reach a fraction in one step.
Comments