cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A292116 Numbers for which there exists a nontrivial bisection of binomial coefficients as given by Theorem 12 of Ionascu et al. (2016).

Original entry on oeis.org

13, 14, 33, 34, 61, 62, 97, 98, 103, 141, 142, 193, 194, 253, 254, 321, 322, 397, 398, 481, 482, 573, 574, 673, 674, 713, 781, 782, 897, 898, 1021, 1022, 1153, 1154, 1293, 1294, 1441, 1442, 1597, 1598, 1761, 1762, 1933, 1934, 2113, 2114, 2301, 2302, 2497, 2498, 2701, 2702, 2913, 2914, 3133, 3134
Offset: 1

Views

Author

N. J. A. Sloane, Sep 10 2017

Keywords

Comments

It would be nice to have a more precise definition.
From Ray Chandler, Sep 11 2017: (Start)
The sequence is the union of three types of numbers:
(1) A060626 beginning with the 2nd term.
(2) A089508 beginning with the 3rd term and omitting even values (every third term).
(3) A082109 beginning with the 2nd term.
Note that there appear to be other solutions that are not covered by Theorem 12.
(End)

Crossrefs

Programs

  • Mathematica
    lim=3000; a0={};
    k=4; While[c=k^2-3;c<=lim,a0=Join[a0,{c,c+1}];k+=2];
    k=2; While[c=Fibonacci[2k]*Fibonacci[2k+1]-1;c<=lim,If[OddQ[c],AppendTo[a0,c]];k++];
    a0=Sort[a0] (* Ray Chandler, Sep 11 2017 *)