cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A292119 O.g.f. equals the square of the e.g.f. of A291561.

Original entry on oeis.org

1, 10, 130, 2100, 40950, 943740, 25269300, 774635400, 26836251750, 1038607069500, 44448725821500, 2084869401615000, 106355178306877500, 5861473946222895000, 346999395775257225000, 21956626245257906202000, 1478562610889805715023750, 105561794005139231136877500, 7963731010308915234880987500, 632966979266333111428303275000, 52862553418201438508049805852500
Offset: 2

Views

Author

Paul D. Hanna, Sep 18 2017

Keywords

Comments

A291561 is a diagonal in triangle A291560: a(n) = -A291560(n+1, n) for n >= 1; the e.g.f. of triangle A291560 equals arcsin( k*sin(x) ).

Examples

			O.g.f.: A(x) = x^2 + 10*x^3 + 130*x^4 + 2100*x^5 + 40950*x^6 + 943740*x^7 + 25269300*x^8 + 774635400*x^9 + 26836251750*x^10 + 1038607069500*x^11 + 44448725821500*x^12 + 2084869401615000*x^13 + 106355178306877500*x^14 + 5861473946222895000*x^15 + 346999395775257225000*x^16 + 21956626245257906202000*x^17 + 1478562610889805715023750*x^18 + ...
such that the square root of the g.f. equals the e.g.f. of A291561, which begins:
A(x)^(1/2) = x + 10*x^2/2! + 315*x^3/3! + 18900*x^4/4! + 1819125*x^5/5! + 255405150*x^6/6! + 49165491375*x^7/7! + 12417798393000*x^8/8! + 3981456609755625*x^9/9! + 1579311121869731250*x^10/10! + ... + A291561(n)*x^n/n! + ...
		

Crossrefs

Programs

  • PARI
    {A291560(n, r) = (2*n-1)! * polcoeff( polcoeff( asin( k*sin(x + O(x^(2*n)))), 2*n-1, x), 2*r-1, k)}
    {a(n) = polcoeff( sum(m=1,n,-A291560(m+1, m) * x^m / m! +x*O(x^n) )^2, n)}
    for(n=2, 25, print1(a(n), ", "))