cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A292144 a(n) is the greatest k < n such that k*n is square.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 2, 4, 0, 0, 3, 0, 0, 0, 9, 0, 8, 0, 5, 0, 0, 0, 6, 16, 0, 12, 7, 0, 0, 0, 18, 0, 0, 0, 25, 0, 0, 0, 10, 0, 0, 0, 11, 20, 0, 0, 27, 36, 32, 0, 13, 0, 24, 0, 14, 0, 0, 0, 15, 0, 0, 28, 49, 0, 0, 0, 17, 0, 0, 0, 50, 0, 0, 48, 19, 0, 0, 0, 45
Offset: 1

Views

Author

Peter Kagey, Sep 09 2017

Keywords

Comments

a(n) = 0 if and only if n is squarefree: a(A005117(n)) = 0 for all n, and a(A013929(n)) > 0 for all n.
A072905 is the right inverse of a: a(A072905(n)) = n.
If a(n) = a(m) != 0, then n = m.
Proof: Without loss of generality, assume a(n) = a(m) < n < m. Then n*a(n)*m*a(m) is square and a(n)*a(m) is square, which implies that n*m is square. Notice that n > a(m), so a(m) is not the greatest integer k such that k*m is square. This is a contradiction.

Examples

			For n = 63, a(63) = 28 because 28*63 = (7*4)*(7*9) = (7*2*3)^2 = 42^2, and there is no integer 28 < k < 63 such that 63*k is square.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local F,r;
       F:= ifactors(n)[2];
       r:= mul(t[1], t = select(t -> t[2]::odd, F));
       r*(ceil(sqrt(n/r))-1)^2;
    end proc: # Robert Israel, Sep 10 2017
  • Mathematica
    a[n_] := If[SquareFreeQ[n], 0, For[k = n-1, k > 0, k--, If[IntegerQ[ Sqrt[ k*n] ], Return[k]]]]; Array[a, 80] (* Jean-François Alcover, Sep 11 2017 *)
  • PARI
    forstep (k=n-1, 1, -1, if (issquare(k*n), return (k))); return (0); \\ Michel Marcus, Sep 10 2017

Formula

a(n) = A007913(n)*(ceiling(sqrt(n/A007913(n))-1)^2). - Robert Israel and Michel Marcus, Sep 11 2017