A292168 Number of permutations p of [n] such that 0p has a nonincreasing jump sequence beginning with two.
1, 2, 5, 9, 17, 31, 57, 101, 185, 333, 599, 1089, 1975, 3563, 6505, 11829, 21455, 39257, 71641, 130403, 239193, 437677, 799127, 1468777, 2693853, 4930871, 9079127, 16684737, 30605159, 56441227, 103900161, 190934999, 352606721, 650072239, 1196527319, 2212404279
Offset: 2
Keywords
Examples
a(2) = 1: 21. a(3) = 2: 213, 231. a(4) = 5: 2134, 2314, 2341, 2413, 2431. a(5) = 9: 21345, 23145, 23415, 23451, 24135, 24153, 24315, 24351, 24531. a(6) = 17: 213456, 231456, 234156, 234516, 234561, 241356, 241536, 241563, 243156, 243516, 243561, 245316, 245361, 245631, 246315, 246351, 246531.
Links
- Alois P. Heinz, Table of n, a(n) for n = 2..3630
Crossrefs
Column k=2 of A291684.
Programs
-
Maple
b:= proc(u, o, t) option remember; `if`(u+o=0, 1, add(b(u-j, o+j-1, j), j=1..min(t, u))+ add(b(u+j-1, o-j, j), j=1..min(t, o))) end: a:= n-> b(0, n, 2)-b(0, n, 1): seq(a(n), n=2..50);
Comments