A292170 Number of permutations p of [n] such that 0p has a nonincreasing jump sequence beginning with four.
5, 14, 36, 98, 327, 788, 1890, 4523, 11483, 27209, 61983, 139568, 323531, 730494, 1618531, 3543509, 7851556, 17204960, 37331967, 80312122, 173234350, 372183777, 794587802, 1686743710, 3579347697, 7578433425, 15984149737, 33580700124, 70467297970, 147600492302
Offset: 4
Keywords
Examples
a(4) = 5: 4123, 4132, 4213, 4231, 4321. a(5) = 14: 41235, 41325, 41352, 41523, 41532, 42135, 42315, 42351, 42513, 42531, 43215, 43251, 43521, 45321. a(6) = 36: 412356, 413256, 413526, 413562, 413625, 413652, 415236, 415263, 415326, 415362, 415632, 421356, 423156, 423516, 423561, 425136, 425163, 425316, 425361, 425631, 432156, 432516, 432561, 435216, 435261, 435621, 453216, 453261, 453621, 456321, 463125, 463152, 463215, 463251, 463521, 465321.
Links
- Alois P. Heinz, Table of n, a(n) for n = 4..3365
Crossrefs
Column k=4 of A291684.
Programs
-
Maple
b:= proc(u, o, t) option remember; `if`(u+o=0, 1, add(b(u-j, o+j-1, j), j=1..min(t, u))+ add(b(u+j-1, o-j, j), j=1..min(t, o))) end: a:= n-> b(0, n, 4)-b(0, n, 3): seq(a(n), n=4..50);
Comments