A292172 Number of permutations p of [n] such that 0p has a nonincreasing jump sequence beginning with six.
52, 166, 425, 1116, 3392, 10872, 38795, 102634, 260334, 651704, 1707641, 4477199, 12277412, 30970764, 75239813, 181934538, 440594545, 1063081418, 2625678546, 6286974074, 14803016600, 34534616815, 80129926919, 185059517397, 431845849360, 997735570874
Offset: 6
Keywords
Examples
a(6) = 52: 612345, 613245, 613425, 613452, 613524, 613542, 614235, 614253, 614325, 614352, 614532, 615234, 615243, 615324, 615342, 615432, 621345, 623145, 623415, 623451, 624135, 624153, 624315, 624351, 624531, 625134, 625143, 625314, 625341, 625431, 631245, 631425, 631452, 632145, 632415, 632451, 634215, 634251, 634521, 635214, 635241, 635421, 642135, 642315, 642351, 642513, 642531, 643215, 643251, 643521, 645321, 654321.
Links
- Alois P. Heinz, Table of n, a(n) for n = 6..2000
Crossrefs
Column k=6 of A291684.
Programs
-
Maple
b:= proc(u, o, t) option remember; `if`(u+o=0, 1, add(b(u-j, o+j-1, j), j=1..min(t, u))+ add(b(u+j-1, o-j, j), j=1..min(t, o))) end: a:= n-> b(0, n, 6)-b(0, n, 5): seq(a(n), n=6..50);
Comments