cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A380626 Array read by antidiagonals: T(n,k) is the number of sensed k-regular combinatorial maps with n vertices, n >= 0, k >= 1.

Original entry on oeis.org

1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 2, 3, 1, 0, 1, 0, 7, 0, 1, 0, 1, 5, 29, 36, 11, 1, 0, 1, 0, 174, 0, 365, 0, 1, 0, 1, 18, 1475, 26614, 44106, 5250, 81, 1, 0, 1, 0, 16162, 0, 10107019, 0, 103801, 0, 1, 0, 1, 105, 214215, 102762168, 3703659517, 6605320523, 549530780, 2492164, 1228, 1, 0
Offset: 0

Views

Author

Andrew Howroyd, Jan 29 2025

Keywords

Comments

The combinatorial maps considered are connected, unrooted, unlabeled, may have loops and parallel edges and are of any orientable genus.

Examples

			Array begins:
==================================================================
n\k | 1 2  3       4         5          6          7         8 ...
----+-------------------------------------------------------------
  0 | 1 1  1       1         1          1          1         1 ...
  1 | 0 1  0       2         0          5          0        18 ...
  2 | 1 1  3       7        29        174       1475     16162 ...
  3 | 0 1  0      36         0      26614          0 102762168 ...
  4 | 0 1 11     365     44106   10107019 3703659517 ...
  5 | 0 1  0    5250         0 6605320523 ...
  6 | 0 1 81  103801 549530780 ...
  7 | 0 1  0 2492164 ...
   ...
		

Crossrefs

Columns 2..6 (odd columns with interspersed zeros) are A000012, A129114, A292206, A380627, A380628.
Row n=1 is A007769 (with interspersed zeros).
Cf. A170946, A380622 (rooted), A380629.

Programs

  • PARI
    InvEulerT(v)={dirdiv(Vec(log(1+x*Ser(v)),-#v), vector(#v,n,1/n))}
    D(m,k)={my(g=gcd(m,k)); sumdiv(g, d, my(j=m/d); x^j*eulerphi(d)*k^(j-1)/j)}
    G(n,m)={my(t=m*n); prod(k=1, t, my(A=O(x^(t\k+1)), p=serconvol(exp(A + D(m,k)), exp(A + D(2,k)))); sum(r=0, t\k, if(k*r%m==0, r!*polcoef(p,r)/(k^r)*x^(k*r/m)), O(x*x^n)) )}
    T(n,k)=if(n==0, 1, InvEulerT(Vec(-1 + G(n,k), -n))[n])

Formula

A380629(n) = Sum_{d|2*n} T(d,2*n/d).

A268556 Number of pairs (tau, sigma) of permutations of a set of size 4*n, where tau (resp. sigma) has only 2-cycles (resp. 4-cycles), up to simultaneous conjugacy.

Original entry on oeis.org

1, 2, 10, 54, 491, 6430, 119475, 2775582, 76733201, 2439149685, 87453344290, 3488115999471, 153144951882415, 7338420391031823, 381071098250317995, 21315652618569993733, 1277715228291442258979, 81707184260073101216920, 5552193525061715345715130, 399514236526927579390940395
Offset: 0

Views

Author

N. J. A. Sloane, Mar 02 2016

Keywords

Comments

a(n) is the number of not necessarily connected 4-regular sensed combinatorial maps on an orientable surface with n vertices (and therefore 2n edges). - Andrew Howroyd, Jan 29 2025

Crossrefs

Programs

  • PARI
    D(m,k)={my(g=gcd(m,k)); sumdiv(g, d, my(j=m/d); x^j*eulerphi(d)*k^(j-1)/j)}
    seq(n)={my(m=4,t=m*n); Vec(prod(k=1, t, my(A=O(x^(t\k+1)), p=serconvol(exp(A + D(m,k)), exp(A + D(2,k)))); sum(r=0, t\k, if(k*r%m==0, r!*polcoef(p,r)/(k^r)*x^(k*r/m)), O(x*x^n)) ))} \\ Andrew Howroyd, Jan 29 2025

Formula

Euler transform of A292206. - Andrey Zabolotskiy, Jan 14 2025

Extensions

a(0) and terms a(10)-a(17) from Andrey Zabolotskiy, Jan 23 2025
a(18) onwards from Andrew Howroyd, Jan 27 2025
Showing 1-2 of 2 results.