A292226 Composite numbers m (in increasing order) for which the m-th row polynomial of A027750 in rising powers is irreducible over the integers.
4, 9, 12, 16, 24, 25, 30, 36, 40, 45, 48, 49, 56, 60, 63, 64, 70, 72, 80, 81, 84, 90, 96, 105, 108, 112, 120, 121, 126, 132, 135, 140, 144, 150, 154, 160, 165, 168, 169, 175, 176, 180, 182, 189, 192, 195, 198, 200, 208, 210, 216, 220, 224, 225, 231, 234, 240, 252, 260, 264, 270, 273, 275, 280, 286, 288, 289, 297, 300
Offset: 1
Keywords
Examples
n = 1: P(4, x) = 1 + 2*x + 4*x^2 of degree A032741(4) = 2. The composite number 6 is not a member of this sequence because P(6, x) = 1 + 2*x + 3*x^2 + 6*x^3 of degree A032741(6) = 3 factorizes as (1 + 2*x)*(1 + 3*x^2). m = 18 is not a member of the sequence because P(18, x) = 1 + 2*x + 3*x^2 + 6*x^3 + 9*x^4 + 18*x^5 = (1 + 2*x)*(1 + 3*x^2 + 9*x^4). m = 18 does also not appear in A291127.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
filter:= proc(n) local d,i,x; if isprime(n) then return false fi; d:= numtheory:-divisors(n); irreduc(add(d[i]*x^(i-1),i=1..nops(d))) end proc: select(filter, [$2..1000]); # Robert Israel, Oct 31 2017
-
Mathematica
P[n_, x_] := (d = Divisors[n]).x^Range[0, Length[d] - 1]; okQ[n_] := CompositeQ[n] && IrreduciblePolynomialQ[P[n, x]]; Select[Range[300], okQ] (* Jean-François Alcover, Oct 30 2017 *)
Comments