cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A292228 Denominators of partial sums of the series 1 + 2*Sum_{k >= 1} 1/(4*k^4 + 1).

Original entry on oeis.org

1, 5, 65, 325, 13325, 812825, 13818025, 1561436825, 45281667925, 8195981894425, 482116582025, 434387040404525, 135963143646616325, 9925309486202991725, 4178555293691459516225, 154606545866584002100325, 16852113499457656228935425, 10330345575167543268337415525, 1415257343797953427762225926925, 1077010838630242558527053930389925
Offset: 0

Views

Author

Wolfdieter Lang, Oct 30 2017

Keywords

Comments

The corresponding numerators are given in A292227.
For the value of the series see A292227, and the Koecher reference given there.

Examples

			See A292227.
		

Crossrefs

Cf. A292227.

Programs

  • Maple
    seq(denom(t),t=ListTools:-PartialSums([1, seq(2/(4*k^4+1),k=1..30)])); # Robert Israel, Oct 30 2017
  • Mathematica
    {1}~Join~Denominator[1 + 2 Accumulate[Array[1/(4 #^4 + 1) &, 19]]] (* Michael De Vlieger, Oct 30 2017 *)
  • PARI
    a(n) = denominator(1+2*sum(k=1, n, 1/(4*k^4 + 1))); \\ Michel Marcus, Oct 30 2017

Formula

a(n) = denominator(s(n)) with the rationals (in lowest terms) s(n) = 1 + 2*Sum_{k=1..n} 1/(4*k^4 + 1), n >= 0.
Showing 1-1 of 1 results.