A292239 A multiplicative encoding for the exponents of 2 obtained when using Shevelev's algorithm for computing A002326.
2, 3, 10, 5, 28, 252, 840, 7, 88, 23760, 22, 330, 66528, 23760, 6652800, 11, 208, 468, 471744000, 390, 58240, 1872, 468, 163800, 93600, 39, 3736212480000, 39000, 17472, 94152554496000, 313841848320000, 13, 544, 7387354275840000, 146880, 84823200, 68, 36720, 12337920, 1079568000
Offset: 0
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 0..1023
Programs
-
Mathematica
a265[n_] := n/2^IntegerExponent[n, 2]; a[n_] := Module[{x, z, m}, x = 2 n + 1; z = Prime[IntegerExponent[1 + x, 2]]; m = a265[1 + x]; While[m != 1, z *= Prime[IntegerExponent[x + m, 2]]; m = a265[x + m]]; z]; Table[a[n], {n, 0, 39}] (* Jean-François Alcover, Oct 03 2017, translated from PARI *)
-
PARI
A000265(n) = (n >> valuation(n, 2)); A292239(n) = { my(x = n+n+1, z = prime(valuation(1+x,2)), m = A000265(1+x)); while(m!=1, z *= prime(valuation(x+m,2)); m = A000265(x+m)); z; };
-
Scheme
(define (A292239 n) (let ((x (+ n n 1))) (let loop ((z (A000040 (A007814 (+ 1 x)))) (k 1)) (let ((m (A000265 (+ x k)))) (if (= 1 m) z (loop (* z (A000040 (A007814 (+ x m)))) m))))))
Comments