cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A292239 A multiplicative encoding for the exponents of 2 obtained when using Shevelev's algorithm for computing A002326.

Original entry on oeis.org

2, 3, 10, 5, 28, 252, 840, 7, 88, 23760, 22, 330, 66528, 23760, 6652800, 11, 208, 468, 471744000, 390, 58240, 1872, 468, 163800, 93600, 39, 3736212480000, 39000, 17472, 94152554496000, 313841848320000, 13, 544, 7387354275840000, 146880, 84823200, 68, 36720, 12337920, 1079568000
Offset: 0

Views

Author

Antti Karttunen, Oct 02 2017

Keywords

Comments

a(n) = prime(v(1)) * prime(v(2)) * ... * prime(v(k)), where prime(n) is the n-th prime (= A000040(n)) and v(1) .. v(k) are 2-adic valuations (not all necessarily distinct) of the iterated values obtained when running Shevelev's algorithm for computing A002326. See comments in A179680 and compare to A292265.

Crossrefs

Programs

  • Mathematica
    a265[n_] := n/2^IntegerExponent[n, 2];
    a[n_] := Module[{x, z, m}, x = 2 n + 1; z = Prime[IntegerExponent[1 + x, 2]]; m = a265[1 + x]; While[m != 1, z *= Prime[IntegerExponent[x + m, 2]]; m = a265[x + m]]; z];
    Table[a[n], {n, 0, 39}] (* Jean-François Alcover, Oct 03 2017, translated from PARI *)
  • PARI
    A000265(n) = (n >> valuation(n, 2));
    A292239(n) = { my(x = n+n+1, z = prime(valuation(1+x,2)), m = A000265(1+x)); while(m!=1, z *= prime(valuation(x+m,2)); m = A000265(x+m)); z; };
    
  • Scheme
    (define (A292239 n) (let ((x (+ n n 1))) (let loop ((z (A000040 (A007814 (+ 1 x)))) (k 1)) (let ((m (A000265 (+ x k)))) (if (= 1 m) z (loop (* z (A000040 (A007814 (+ x m)))) m))))))

Formula

For all n >= 0:
A001222(a(n)) = A179382(1+n).
A056239(a(n)) = A002326(n).