cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A304750 Restricted growth sequence transform of A292240(n), formed from 0-digits in ternary representation of A254103(n).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 4, 1, 1, 1, 1, 4, 1, 1, 1, 2, 5, 3, 4, 2, 1, 3, 4, 2, 1, 6, 7, 1, 1, 3, 4, 5, 1, 1, 1, 2, 8, 1, 1, 7, 5, 5, 5, 4, 1, 8, 8, 7, 5, 5, 5, 9, 1, 1, 1, 2, 10, 3, 4, 1, 1, 8, 8, 11, 5, 12, 13, 1, 1, 3, 4, 5, 1, 1, 1, 4, 14, 3, 4, 2, 1, 15, 16, 1, 8, 12, 13, 2, 8, 6, 7, 9, 1, 17, 18, 2, 14, 15, 16, 19, 8, 12
Offset: 0

Views

Author

Antti Karttunen, May 30 2018

Keywords

Comments

For all i, j: a(i) = a(j) => A292241(i) = A292241(j).

Crossrefs

Programs

  • PARI
    A254103(n) = if(!n,n,if(!(n%2),(3*A254103(n/2))-1,(3*(1+A254103((n-1)/2)))\2));
    A291770(n) = { my(s=0, b=1, d); while(n>2, if(!(n%3), s += b); b <<= 1; n \= 3); (s); };
    A292240(n) = A291770(A254103(n));
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    v304750 = rgs_transform(vector(65538,n,A292240(n-1)));
    A304750(n) = v304750[1+n];

A292241 The 3-adic valuation of A254103(n).

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 1, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 3, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 2, 0, 0, 0, 0, 0, 1, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 1, 0, 4, 0, 0, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 0, 0, 0, 0, 1, 0, 2, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Antti Karttunen, Sep 12 2017

Keywords

Crossrefs

One less than the even bisection of A292242.
Cf. also A292251, A292261.

Formula

a(n) = A007814(1+A292240(n)).
a(n) = A007949(A254103(n)).
For n >= 1, a(n) = A007949(3*A254103(n)) - 1.
For n >= 1, a(n) = A292242(2n)-1.

A292250 Binary encoding of 0-digits in ternary representation of A048673(n).

Original entry on oeis.org

0, 0, 1, 0, 0, 0, 1, 0, 0, 2, 0, 0, 3, 0, 3, 0, 2, 2, 1, 4, 6, 2, 1, 0, 0, 0, 3, 0, 0, 0, 2, 0, 5, 6, 1, 4, 1, 4, 0, 8, 0, 14, 1, 4, 12, 0, 7, 0, 4, 2, 1, 0, 5, 8, 2, 0, 4, 2, 4, 0, 4, 6, 5, 0, 5, 8, 3, 12, 2, 4, 2, 8, 0, 4, 1, 8, 3, 2, 1, 16, 16, 2, 3, 28, 0, 0, 1, 8, 0, 26, 8, 0, 9, 0, 15, 0, 1, 10, 14, 4, 0, 4, 7, 0, 4, 12, 6, 16, 5, 6, 8, 0, 2, 10, 9, 4
Offset: 1

Views

Author

Antti Karttunen, Sep 12 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Map[FromDigits[IntegerDigits[#, 3] /. k_ /; k < 3 :> If[k == 0, 1, 0], 2] &, Table[(Times @@ Power[If[# == 1, 1, NextPrime@ #] & /@ First@ #, Last@ #] + 1)/2 &@ Transpose@ FactorInteger@ n, {n, 116}]] (* Michael De Vlieger, Sep 12 2017 *)

Formula

a(n) = A291770(A048673(n)).

A292260 Binary encoding of 0-digits in ternary representation of A245612(n).

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 0, 0, 3, 2, 0, 0, 3, 2, 1, 0, 16, 8, 10, 4, 1, 2, 4, 0, 12, 0, 1, 4, 6, 0, 0, 0, 41, 34, 0, 16, 33, 22, 11, 8, 2, 0, 10, 4, 21, 10, 12, 0, 5, 26, 23, 0, 4, 4, 3, 8, 5, 14, 2, 0, 5, 2, 3, 0, 146, 80, 132, 68, 43, 2, 180, 32, 0, 68, 81, 44, 12, 16, 2, 16, 33, 6, 48, 0, 9, 22, 33, 8, 54, 40, 8, 20, 11, 26, 2, 0, 126, 8, 9, 52, 0, 48, 52, 0
Offset: 0

Views

Author

Antti Karttunen, Sep 12 2017

Keywords

Crossrefs

Formula

a(n) = A291770(A245612(n)).
Showing 1-4 of 4 results.