A292253 a(1) = 0, a(2) = 1, and for n > 2, a(n) = 2*a(A252463(n)) + [n == 1 (mod 2)]*[J(3|n) == 1], where J is the Jacobi-symbol.
0, 1, 2, 2, 4, 4, 8, 4, 4, 8, 17, 8, 35, 16, 8, 8, 70, 8, 140, 16, 16, 34, 281, 16, 9, 70, 8, 32, 562, 16, 1124, 16, 32, 140, 17, 16, 2249, 280, 68, 32, 4498, 32, 8996, 68, 16, 562, 17993, 32, 19, 18, 140, 140, 35986, 16, 32, 64, 280, 1124, 71973, 32, 143947, 2248, 32, 32, 64, 64, 287894, 280, 560, 34, 575789, 32, 1151579, 4498, 16, 560, 34, 136, 2303158, 64
Offset: 1
Keywords
Links
Programs
Formula
a(1) = 0, a(2) = 1, and for n > 2, a(n) = 2*a(A252463(n)) + [n == 1 (mod 2)]*[J(3|n) == 1], where J is the Jacobi-symbol, and [ ]'s are Iverson brackets, whose product gives 1 only if n is an odd number for which J(3|n) = +1, and 0 otherwise.
Comments