cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A292287 Number of multisets of exactly n nonempty balanced binary Lyndon words with a total of 4n letters (2n zeros and 2n ones).

Original entry on oeis.org

1, 1, 4, 12, 43, 142, 508, 1781, 6414, 23124, 84296, 308613, 1137129, 4207456, 15636927, 58322808, 218272766, 819319778, 3083913810, 11636761924, 44010780075, 166802192488, 633420816341, 2409731688860, 9182826866499, 35048239457878, 133965833871427
Offset: 0

Views

Author

Alois P. Heinz, Sep 20 2017

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory):
    g:= proc(n) option remember; `if`(n=0, 1, add(
          mobius(n/d)*binomial(2*d, d), d=divisors(n))/(2*n))
        end:
    a:= proc(n) option remember; `if`(n=0, 1, add(add(
          d*g(d+1), d=divisors(j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..30);
  • Mathematica
    g[n_] := g[n] = If[n == 0, 1, Sum[MoebiusMu[n/d] Binomial[2d, d], {d, Divisors[n]}]/(2n)];
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d*g[d+1], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Nov 23 2023, after Alois P. Heinz *)

Formula

G.f.: Product_{j>=1} 1/(1-x^j)^A022553(j+1).
a(n) = A289978(2n,n).