A292287 Number of multisets of exactly n nonempty balanced binary Lyndon words with a total of 4n letters (2n zeros and 2n ones).
1, 1, 4, 12, 43, 142, 508, 1781, 6414, 23124, 84296, 308613, 1137129, 4207456, 15636927, 58322808, 218272766, 819319778, 3083913810, 11636761924, 44010780075, 166802192488, 633420816341, 2409731688860, 9182826866499, 35048239457878, 133965833871427
Offset: 0
Keywords
Links
Programs
-
Maple
with(numtheory): g:= proc(n) option remember; `if`(n=0, 1, add( mobius(n/d)*binomial(2*d, d), d=divisors(n))/(2*n)) end: a:= proc(n) option remember; `if`(n=0, 1, add(add( d*g(d+1), d=divisors(j))*a(n-j), j=1..n)/n) end: seq(a(n), n=0..30);
-
Mathematica
g[n_] := g[n] = If[n == 0, 1, Sum[MoebiusMu[n/d] Binomial[2d, d], {d, Divisors[n]}]/(2n)]; a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d*g[d+1], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Nov 23 2023, after Alois P. Heinz *)