A292290 Number of vertices of type A at level n of the hyperbolic Pascal pyramid.
0, 0, 3, 6, 12, 27, 66, 168, 435, 1134, 2964, 7755, 20298, 53136, 139107, 364182, 953436, 2496123, 6534930, 17108664, 44791059, 117264510, 307002468, 803742891, 2104226202, 5508935712, 14422580931, 37758807078, 98853840300, 258802713819, 677554301154
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- László Németh, Hyperbolic Pascal pyramid, arXiv:1511.0267 [math.CO], 2015 (1st line of Table 1).
- Index entries for linear recurrences with constant coefficients, signature (4,-4,1).
Crossrefs
Cf. A264236.
Programs
-
Mathematica
CoefficientList[Series[3*x^2*(1 - 2*x)/((1 - x)*(1 - 3*x + x^2)), {x, 0, 30}], x] (* Wesley Ivan Hurt, Sep 17 2017 *)
-
PARI
concat(vector(2), Vec(3*x^2*(1 - 2*x) / ((1 - x)*(1 - 3*x + x^2)) + O(x^30))) \\ Colin Barker, Sep 17 2017
Formula
a(n) = 4*a(n-1) - 4*a(n-2) + a(n-3), n >= 4.
From Colin Barker, Sep 17 2017: (Start)
G.f.: 3*x^2*(1 - 2*x) / ((1 - x)*(1 - 3*x + x^2)).
a(n) = 3*(1 + (2^(-1-n)*((7-3*sqrt(5))*(3+sqrt(5))^n - (3-sqrt(5))^n*(7+3*sqrt(5)))) / sqrt(5)) for n>0.
(End)
a(n) = 3*(Fibonacci(2*n - 4) + 1) for n > 0. - Ehren Metcalfe, Apr 18 2019