A292296 Sum of values of vertices of type B at level n of the hyperbolic Pascal pyramid.
0, 0, 0, 6, 30, 114, 402, 1386, 4746, 16218, 55386, 189114, 645690, 2204538, 7526778, 25698042, 87738618, 299558394, 1022756346, 3491908602, 11922121722, 40704669690, 138974435322, 474488401914, 1620004737018, 5531042144250, 18884159102970, 64474552123386
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- László Németh, Hyperbolic Pascal pyramid, arXiv:1511.0267 [math.CO], 2015 (2nd line of Table 2).
- Index entries for linear recurrences with constant coefficients, signature (5,-6,2).
Crossrefs
Cf. A264237.
Programs
-
Mathematica
CoefficientList[Series[6*x^3/((1 - x)*(1 - 4*x + 2*x^2)), {x, 0, 30}], x] (* Wesley Ivan Hurt, Sep 17 2017 *)
-
PARI
concat(vector(3), Vec(6*x^3 / ((1 - x)*(1 - 4*x + 2*x^2)) + O(x^30))) \\ Colin Barker, Sep 17 2017
Formula
a(n) = 5*a(n-1) - 6*a(n-2) + 2*a(n-3), n >= 4.
From Colin Barker, Sep 17 2017: (Start)
G.f.: 6*x^3 / ((1 - x)*(1 - 4*x + 2*x^2)).
a(n) = (1/2)*(-12 + (9-6*sqrt(2))*(2+sqrt(2))^n + (2-sqrt(2))^n*(9+6*sqrt(2))) for n>0.
(End)