A292328 p-INVERT of the Fibonacci sequence (A000045), where p(S) = (1 - S)^3.
3, 9, 28, 84, 246, 707, 2001, 5592, 15461, 42357, 115122, 310716, 833472, 2223471, 5902415, 15598896, 41058423, 107673601, 281416248, 733229412, 1904957434, 4936026747, 12758472189, 32901998472, 84667043769, 217437602349, 557361593902, 1426167813324
Offset: 0
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (6, -9, -4, 9, 6, 1)
Programs
-
Mathematica
z = 60; s = x/(1 - x - x^2); p = (1 - s)^3; Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000045 *) Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A292328 *) LinearRecurrence[{6,-9,-4,9,6,1},{3,9,28,84,246,707},30] (* Harvey P. Dale, Jul 01 2022 *)
-
PARI
x='x+O('x^99); Vec((3-9*x+x^2+9*x^3+3*x^4)/(1-2*x-x^2)^3) \\ Altug Alkan, Oct 03 2017
Formula
G.f.: (3 - 9*x + x^2 + 9*x^3 + 3*x^4)/(1 - 2*x - x^2)^3.
a(n) = 6*a(n-1) - 9*a(n-2) - 4*a(n-3) + 9*a(n-4) + 6*a(n-5) + a(n-6) for n >= 7.
Comments