A292341 Number of unrooted loops of length 2n on the square lattice that have winding number +1 around a fixed off-lattice point.
1, 16, 232, 3328, 47957, 696304, 10187288, 150087168, 2224889247, 33160970672, 496608054904, 7468314975488, 112731489535747, 1707278435651920, 25932766975385096, 394956591009678336, 6029683178394959854, 92254556123206383072
Offset: 2
Examples
For n=2 there is a(2)=1 such loop: the contour of the unit square (in counterclockwise direction).
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 2..800
- T. Budd, Winding of simple walks on the square lattice, arXiv:1709.04042 [math.CO], 2017.
Crossrefs
Cf. A005797.
Programs
-
Mathematica
a[n_] := SeriesCoefficient[q^2/(1-q^4) /. q->EllipticNomeQ[16 x], {x,0,n}]
Formula
G.f.: A(x) = q^2/(1-q^4) with q=q(16x) the Jacobi nome of parameter m=16x.
Comments