A292348 "Pri-most" numbers: the majority of bits in the binary representation of these numbers satisfy the following: complementing this bit produces a prime number.
6, 7, 15, 19, 21, 23, 27, 43, 45, 63, 71, 75, 77, 81, 99, 101, 105, 111, 135, 147, 159, 165, 175, 183, 189, 195, 225, 231, 235, 237, 243, 255, 261, 273, 285, 309, 315, 335, 345, 357, 363, 375, 381, 423, 435, 483, 495, 507, 553, 555, 573, 585, 645, 663, 669, 675
Offset: 1
Examples
23 is 10111 in binary, 23 XOR {1,2,4,8,16} = {22,21,19,31,7}, three times a prime was produced, namely 19,31,7, versus two composites, 22 and 21. More primes than composites, therefore 23 is a term.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
Programs
-
Maple
a:= proc(n) option remember; local k; for k from 1+a(n-1) while add( `if`(isprime(Bits[Xor](k, 2^i)), 1, -1), i=0..ilog2(k))<1 do od; k end: a(0):=0: seq(a(n), n=1..100); # Alois P. Heinz, Dec 07 2017
-
Mathematica
okQ[n_] := Module[{cnt, f}, cnt = Thread[f[n, 2^Range[0, Log[2, n] // Floor]]] /. f -> BitXor // PrimeQ; Count[cnt, True] > Length[cnt]/2]; Select[Range[1000], okQ] (* Jean-François Alcover, Oct 04 2019 *)
-
Python
from sympy import isprime for i in range(1000): delta = 0 # foundPrime - nonPrime bit = 1 while bit <= i: if isprime(i^bit): delta += 1 else: delta -= 1 bit*=2 if delta > 0: print(str(i), end=',')
Comments