cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A292361 The number of paths of length 2m in the plane, starting and ending at (0,1), with unit steps in the four directions (north, east, south, west) and staying in the region y > 0 or x > -y.

Original entry on oeis.org

1, 3, 21, 192, 2009, 22818, 273895, 3421318, 44042729, 580473551, 7796745921, 106365396629, 1470068855112, 20543335134692, 289818595800636, 4122517765350669, 59066177091706608
Offset: 0

Views

Author

Timothy Budd, Sep 15 2017

Keywords

Crossrefs

Cf. A135404.

Programs

  • Mathematica
    a[n_] := SeriesCoefficient[-Pi(1 + 2 Sum[(y+3y^2+y^3)/(1+y+y^2+y^3+y^4) /. y->EllipticNomeQ[m]^l, {l,n+1}])/(4EllipticK[m]) /. m->16x, {x,0,n+1}]

Formula

G.f.: A(x) = 1/(2x) - (Pi / (4 x K(16x))) * (1 + 2 Sum_{n>=1} (q^n + 3q^(2n)+ q^(3n)) / (1 + q^n + q^(2n) + q^(3n) + q^(4n)) ), where q=q(16x) is the Jacobi nome of parameter m=16x and K(16x) is the complete elliptic integral of the first kind of parameter m=16x (proven).