A292371 A binary encoding of 1-digits in the base-4 representation of n.
0, 1, 0, 0, 2, 3, 2, 2, 0, 1, 0, 0, 0, 1, 0, 0, 4, 5, 4, 4, 6, 7, 6, 6, 4, 5, 4, 4, 4, 5, 4, 4, 0, 1, 0, 0, 2, 3, 2, 2, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 2, 3, 2, 2, 0, 1, 0, 0, 0, 1, 0, 0, 8, 9, 8, 8, 10, 11, 10, 10, 8, 9, 8, 8, 8, 9, 8, 8, 12, 13, 12, 12, 14, 15, 14, 14, 12, 13, 12, 12, 12, 13, 12, 12, 8, 9, 8, 8, 10, 11, 10, 10, 8, 9, 8, 8, 8, 9, 8, 8, 8
Offset: 0
Examples
n a(n) base-4(n) binary(a(n)) A007090(n) A007088(a(n)) -- ---- ---------- ------------ 1 1 1 1 2 0 2 0 3 0 3 0 4 2 10 10 5 3 11 11 6 2 12 10 7 2 13 10 8 0 20 0 9 1 21 1 10 0 22 0 11 0 23 0 12 0 30 0 13 1 31 1 14 0 32 0 15 0 33 0 16 4 100 100 17 5 101 101 18 4 102 100
Links
- Antti Karttunen, Table of n, a(n) for n = 0..65536
- Rémy Sigrist, Interactive scatterplot of (a(n), A292372(n), A292373(n)) for n=0..4^8-1 [provided your web browser supports the Plotly library, you should see icons on the top right corner of the page: if you choose "Orbital rotation", then you will be able to rotate the plot alongside three axes, the 3D plot here corresponds to a Sierpiński triangle-based pyramid]
- Index entries for sequences related to binary expansion of n
Crossrefs
Programs
-
Mathematica
Table[FromDigits[IntegerDigits[n, 4] /. k_ /; IntegerQ@ k :> If[k == 1, 1, 0], 2], {n, 0, 112}] (* Michael De Vlieger, Sep 21 2017 *)
-
Python
from sympy.ntheory.factor_ import digits def a(n): k=digits(n, 4)[1:] return 0 if n==0 else int("".join('1' if i==1 else '0' for i in k), 2) print([a(n) for n in range(116)]) # Indranil Ghosh, Sep 21 2017
-
Python
def A292371(n): return int(bin(n&~(n>>1))[:1:-2][::-1],2) # Chai Wah Wu, Jun 30 2022