A292375 a(1) = 1, and for n > 1, a(n) = a(A252463(n)) + [n == 1 (mod 4)].
1, 1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 3, 2, 1, 1, 4, 2, 4, 2, 3, 2, 4, 1, 3, 3, 1, 2, 5, 1, 5, 1, 3, 4, 1, 2, 6, 4, 2, 2, 7, 3, 7, 2, 2, 4, 7, 1, 4, 3, 3, 3, 8, 1, 3, 2, 5, 5, 8, 1, 9, 5, 2, 1, 4, 3, 9, 4, 5, 1, 9, 2, 10, 6, 2, 4, 2, 2, 10, 2, 2, 7, 10, 3, 3, 7, 4, 2, 11, 2, 3, 4, 6, 7, 3, 1, 12, 4, 2, 3, 13, 3, 13, 3, 2
Offset: 1
Keywords
Links
Crossrefs
Programs
-
Mathematica
a[1] = 1; a[n_] := a[n] = a[Which[n == 1, 1, EvenQ@n, n/2, True, Times @@ Power[Which[# == 1, 1, # == 2, 1, True, NextPrime[#, -1]] & /@ First@ #, Last@ #] &@ Transpose@ FactorInteger@ n]] + Boole[Mod[n, 4] == 1]; Array[a, 105] (* Michael De Vlieger, Sep 17 2017 *)
-
PARI
A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)}; A292375(n) = if(1==n,n,if(!(n%2),A292375(n/2),(if(1==(n%4),1,0)+A292375(A064989(n)))));
-
Scheme
;; With memoization-macro definec. (definec (A292375 n) (if (= 1 n) 1 (+ (if (= 1 (modulo n 4)) 1 0) (A292375 (A252463 n)))))
Formula
a(1) = 1, a(2n) = a(n), and for odd numbers n > 1, a(n) = a(A064989(n)) + [n == 1 (mod 4)].
Other identities and observations. For n >= 1:
a(n) >= A292374(n).
From Antti Karttunen, Apr 22 2022: (Start)
(End)
Comments