cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A292397 p-INVERT of the tribonacci numbers (A000073(k), k>=2), where p(S) = 1 - S - S^2 - S^3.

Original entry on oeis.org

1, 3, 10, 33, 108, 352, 1144, 3714, 12050, 39084, 126752, 411041, 1332923, 4322363, 14016392, 45451793, 147389276, 477948252, 1549872500, 5025868667, 16297700769, 52849583211, 171378684824, 555740504324, 1802134907175, 5843896942499, 18950374573538
Offset: 0

Views

Author

Clark Kimberling, Sep 18 2017

Keywords

Comments

Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).

Crossrefs

Programs

  • Magma
    I:=[1,3,10,33,108,352,1144,3714,12050]; [n le 9 select I[n] else 4*Self(n-1)-Self(n-2)-3*Self(n-3)-7*Self(n-4)+2*Self(n-5)+6*Self(n-6)+7*Self(n-7)+3*Self(n-8)+Self(n-9): n in [1..30]]; // Vincenzo Librandi, Oct 13 2017
  • Mathematica
    z = 60; s = x/(1 - x - x^2 - x^3); p = 1 - s - s^2 - s^3;
    Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000073 *)
    Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A292397 *)
    LinearRecurrence[{4, -1, -3, -7, 2, 6, 7, 3, 1}, {1, 3, 10, 33, 108, 352, 1144, 3714, 12050}, 30] (* Vincenzo Librandi, Oct 13 2017 *)
  • PARI
    x='x+O('x^99); Vec(((1+x+x^2)*(1-2*x+x^3+x^4))/(1-4*x+x^2+3*x^3+7*x^4-2*x^5-6*x^6-7*x^7-3*x^8-x^9)) \\ Altug Alkan, Oct 04 2017
    

Formula

G.f.: -(((1 + x + x^2) (1 - 2 x + x^3 + x^4))/(-1 + 4 x - x^2 - 3 x^3 - 7 x^4 + 2 x^5 + 6 x^6 + 7 x^7 + 3 x^8 + x^9)).
a(n) = 4*a(n-1) - a(n-2) - 3*a(n-3) - 7*a(n-4) + 2*a(n-5) + 6*a(n-6) + 7*a(n-7) + 3*a(n-8) + a(n-9) for n >= 10.