A292403 p-INVERT of (1,0,0,0,0,1,0,0,0,0,0,0,...), where p(S) = 1 - S^2.
0, 1, 0, 1, 0, 1, 2, 1, 4, 1, 6, 2, 8, 7, 10, 16, 12, 29, 18, 46, 36, 67, 74, 93, 140, 136, 242, 224, 388, 401, 592, 727, 900, 1278, 1422, 2147, 2364, 3467, 4060, 5491, 7004, 8736, 11890, 14191, 19724, 23589, 32128, 39744, 51964, 66991, 84406, 111930, 138588
Offset: 0
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 1)
Crossrefs
Cf. A292402.
Programs
-
Magma
I:=[0,1,0,1,0,1,2,1,4,1,6,2]; [n le 12 select I[n] else Self(n-2)+2*Self(n-7)+Self(n-12): n in [1..60]]; // Vincenzo Librandi, Oct 01 2017
-
Mathematica
z = 60; s = x + x^4; p = 1 - s^2; Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A292403 *) LinearRecurrence[{0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 1}, {0, 1, 0, 1, 0, 1, 2, 1, 4, 1, 6, 2}, 60] (* Vincenzo Librandi, Oct 01 2017 *)
Formula
G.f.: -((x (1 + x)^2 (1 - x + x^2 - x^3 + x^4)^2)/((-1 + x + x^6) (1 + x + x^6))).
a(n) = a(n-2) + 2*a(n-7) + a(n-12) for n >= 13.
Comments