A292420 Expansion of a q-series used by Ramanujan in his Lost Notebook.
1, 2, 2, 3, 4, 4, 6, 8, 8, 11, 14, 16, 20, 24, 28, 34, 42, 48, 57, 68, 78, 94, 110, 126, 148, 172, 198, 230, 266, 304, 351, 404, 460, 526, 602, 684, 780, 888, 1004, 1140, 1290, 1456, 1646, 1856, 2088, 2351, 2644, 2964, 3326, 3728, 4168, 4664, 5212, 5812, 6484
Offset: 0
Keywords
Examples
G.f. = 1 + 2*x + 2*x^2 + 3*x^3 + 4*x^4 + 4*x^5 + 6*x^6 + 8*x^7 + 8*x^8 + ...
References
- Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, page 1, 1st equation with a=-1.
Links
- Robert Israel, Table of n, a(n) for n = 0..1000
Programs
-
Maple
N:= 200: # to get a(0)..a(N) g143064:= add(x^k/mul(1+x^(2*j+1),j=0..k),k=0..2*N): g000009:= mul(1+x^(2*k),k=1..N): S:= series(g143064*g000009,x,2*N+2): seq(coeff(S,x,2*j),j=0..N); # Robert Israel, Sep 17 2017
-
Mathematica
a[ n_] := If[ n < 0, 0, SeriesCoefficient[ QPochhammer[ x^2] / QPochhammer[ x] Sum[ (-1)^k x^(3 k^2 + 2 k) (1 + x^(2 k + 1)), {k, 0, Sqrt[n / 3]}], {x, 0, n}]];
-
PARI
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) / eta(x + A) * sum(k=0, sqrtint(n \ 3), (-1)^k * x^(3*k^2 + 2*k) * (1 + x^(2*k + 1)), A), n))};