cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A292436 Array T read by antidiagonals: T(m,n) is the number of lattice walks of minimal length from (0,0) to (m,n) using steps in directions from {(1,0), (0,1), (2,1), (1,2)}.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 4, 2, 1, 1, 3, 9, 9, 3, 1, 1, 4, 1, 2, 1, 4, 1, 1, 5, 3, 9, 9, 3, 5, 1, 1, 6, 6, 24, 36, 24, 6, 6, 1, 1, 7, 10, 1, 3, 3, 1, 10, 7, 1, 1, 8, 15, 4, 16, 24, 16, 4, 15, 8, 1, 1, 9, 21, 10, 50, 100, 100, 50, 10, 21, 9, 1, 1, 10, 28, 20, 1, 4, 6, 4, 1, 20, 28, 10, 1
Offset: 0

Views

Author

Steven Klee, Dec 08 2017

Keywords

Examples

			Array T(m,n) begins
n\m 0    1    2    3    4    5    6    7    8    9   10
0   1    1    1    1    1    1    1    1    1    1    1
1   1    2    1    2    3    4    5    6    7    8    9
2   1    1    4    9    1    3    6   10   15   21   28
3   1    2    9    2    9   24    1    4   10   20   35
4   1    3    1    9   36    3   16   50    1    5   15
5   1    4    3   24    3   24  100    4   25   90    1
6   1    5    6    1   16  100    6   50  225    5   36
7   1    6   10    4   50    4   50  300   10   90  441
8   1    7   15   10    1   25  225   10  120  735   15
9   1    8   21   20    5   90    5   90  735   20  245
10  1    9   28   35   15    1   36  441   15  245 1960
		

Crossrefs

Programs

  • Sage
    # For an implementation see A292435.

Formula

T(m,n) = binomial(m-n,n) for m>=2*n;
T(m,n) = binomial(q+r,r)*binomial(q+r,m-q) for 1/2*n<=m<=2*n, where m+n = 3*q+r with 0<=r<=2;
T(m,n) = binomial(n-m,m) for m<=1/2*n.