A292436 Array T read by antidiagonals: T(m,n) is the number of lattice walks of minimal length from (0,0) to (m,n) using steps in directions from {(1,0), (0,1), (2,1), (1,2)}.
1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 4, 2, 1, 1, 3, 9, 9, 3, 1, 1, 4, 1, 2, 1, 4, 1, 1, 5, 3, 9, 9, 3, 5, 1, 1, 6, 6, 24, 36, 24, 6, 6, 1, 1, 7, 10, 1, 3, 3, 1, 10, 7, 1, 1, 8, 15, 4, 16, 24, 16, 4, 15, 8, 1, 1, 9, 21, 10, 50, 100, 100, 50, 10, 21, 9, 1, 1, 10, 28, 20, 1, 4, 6, 4, 1, 20, 28, 10, 1
Offset: 0
Examples
Array T(m,n) begins n\m 0 1 2 3 4 5 6 7 8 9 10 0 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 3 4 5 6 7 8 9 2 1 1 4 9 1 3 6 10 15 21 28 3 1 2 9 2 9 24 1 4 10 20 35 4 1 3 1 9 36 3 16 50 1 5 15 5 1 4 3 24 3 24 100 4 25 90 1 6 1 5 6 1 16 100 6 50 225 5 36 7 1 6 10 4 50 4 50 300 10 90 441 8 1 7 15 10 1 25 225 10 120 735 15 9 1 8 21 20 5 90 5 90 735 20 245 10 1 9 28 35 15 1 36 441 15 245 1960
Links
- Jackson Evoniuk, Steven Klee, Van Magnan, Enumerating Minimal Length Lattice Paths, 2017, also Enumerating Minimal Length Lattice Paths, J. Int. Seq., Vol. 21 (2018), Article 18.3.6.
Programs
-
Sage
# For an implementation see A292435.
Formula
T(m,n) = binomial(m-n,n) for m>=2*n;
T(m,n) = binomial(q+r,r)*binomial(q+r,m-q) for 1/2*n<=m<=2*n, where m+n = 3*q+r with 0<=r<=2;
T(m,n) = binomial(n-m,m) for m<=1/2*n.