cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A292447 Primes p such that sigma((p + 1) / 2) is a prime q.

Original entry on oeis.org

3, 7, 17, 31, 127, 577, 3361, 4801, 6961, 8191, 31249, 131071, 171697, 524287, 982801, 1062881, 1104097, 1367857, 1407841, 1468897, 2705137, 3770257, 6822817, 7785457, 10941841, 14183137, 15557041, 18495361, 20749681, 25304497, 36278161, 38878561, 44575681
Offset: 1

Views

Author

Jaroslav Krizek, Sep 16 2017

Keywords

Comments

A companion sequence of A249902.
Mersenne primes p = 2^k - 1 (A000668) are terms: sigma((p + 1) / 2) = sigma((2^k - 1 + 1) / 2) = sigma(2^(k - 1)) = 2^k - 1.
A subsequence of A178490. - Altug Alkan, Oct 02 2017

Examples

			17 is a term because sigma((17 + 1) / 2) = sigma(9) = 13 (prime).
		

Crossrefs

Programs

  • Magma
    [n: n in [1..10^8] | IsPrime(n) and IsPrime(SumOfDivisors((n+1) div 2))];
    
  • Mathematica
    Select[Prime@ Range[10^6], PrimeQ@ DivisorSigma[1, (# + 1)/2] &] (* Michael De Vlieger, Sep 16 2017 *)
  • PARI
    lista(nn) = forprime(p=3, nn, if(isprime(sigma((p+1)/2)), print1(p, ", "))); \\ Altug Alkan, Oct 02 2017

Formula

a(n) = 2*A249902(n) - 1. - Altug Alkan, Oct 02 2017