A292481 p-INVERT of the odd positive integers, where p(S) = 1 - S^3.
0, 0, 1, 9, 42, 139, 381, 984, 2685, 8061, 25434, 79695, 242577, 721584, 2131785, 6333633, 18984618, 57194883, 172319157, 517851144, 1552599333, 4651054101, 13939132698, 41810229351, 125475990057, 376585031520, 1129975049169, 3389800055481, 10168040440746
Offset: 0
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (6, -15, 21, -12, 9)
Programs
-
Mathematica
z = 60; s = x (x + 1)/(1 - x)^2; p = 1 - s^3; Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A005408 *) Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A292481 *) LinearRecurrence[{6,-15,21,-12,9},{0,0,1,9,42,139},30] (* Harvey P. Dale, Jun 06 2024 *)
Formula
G.f.: -((x^2 (1 + x)^3)/((-1 + 3 x) (1 - 3 x + 6 x^2 - 3 x^3 + 3 x^4))).
a(n) = 6*a(n-1) - 25*a(n-2) + 21*a(n-3) - 12*a(n-4) + 9*a(n-5) for n >= 6.
Comments