A292484 p-INVERT of the odd positive integers, where p(S) = 1 + S - S^2.
-1, -1, 4, 9, 5, 8, 63, 183, 348, 745, 2061, 5456, 12991, 30831, 76660, 192137, 472597, 1155032, 2843007, 7024935, 17315404, 42592489, 104847389, 258355104, 636507775, 1567442143, 3859933668, 9507231753, 23417547813, 57675809960, 142047927231, 349856144791
Offset: 0
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3, -4, 7, -1)
Programs
-
Mathematica
z = 60; s = x (x + 1)/(1 - x)^2; p = 1 + s - s^2; Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A005408 *) Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A292484 *) LinearRecurrence[{3,-4,7,-1},{-1,-1,4,9},40] (* Harvey P. Dale, Sep 22 2024 *)
Formula
G.f.: ((1 + x) (-1 + 3 x))/(1 - 3 x + 4 x^2 - 7 x^3 + x^4).
a(n) = 3*a(n-1) - 4*a(n-2) + 7*a(n-3) - a(n-4) for n >= 5.
Comments