A292485 p-INVERT of the odd positive integers, where p(S) = 1 - S - 2 S^2.
1, 6, 28, 120, 504, 2128, 9016, 38208, 161864, 685648, 2904408, 12303264, 52117544, 220773552, 935211704, 3961620096, 16781691912, 71088388112, 301135245080, 1275629368416, 5403652717288, 22890240236144, 96964613663352, 410748694893888, 1739959393240264
Offset: 0
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (5, -5, 7, 2)
Programs
-
Mathematica
z = 60; s = x (x + 1)/(1 - x)^2; p = 1 - s - 2 s^2; Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A005408 *) Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A292485 *) LinearRecurrence[{5,-5,7,2},{1,6,28,120},30] (* Harvey P. Dale, Oct 14 2023 *)
Formula
G.f.: -(((1 + x) (1 + 3 x^2))/((-1 + 4 x + x^2) (1 - x + 2 x^2))).
a(n) = 5*a(n-1) - 5*a(n-2) + 7*a(n-3) + 2*a(n-4) for n >= 5.
Comments