A292486 p-INVERT of the odd positive integers, where p(S) = 1 - S - 3 S^2.
1, 7, 36, 165, 747, 3420, 15705, 72063, 330516, 1515933, 6953283, 31893516, 146289393, 671000247, 3077745156, 14117009877, 64751939163, 297004363452, 1362300384969, 6248602953135, 28661108314356, 131462846314317, 602994126047283, 2765815028667756
Offset: 0
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (5, -4, 9, 3)
Programs
-
Mathematica
z = 60; s = x (x + 1)/(1 - x)^2; p = 1 - s - 3 s^2; Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A005408 *) Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A292486 *) LinearRecurrence[{5,-4,9,3},{1,7,36,165},30] (* Harvey P. Dale, Sep 29 2024 *)
-
PARI
x='x+O('x^99); Vec(((1+x)*(1+x+4*x^2))/(1-5*x+4*x^2-9*x^3-3*x^4)) \\ Altug Alkan, Oct 03 2017
Formula
G.f.: -(((1 + x) (1 + x + 4 x^2))/(-1 + 5 x - 4 x^2 + 9 x^3 + 3 x^4)).
a(n) = 5*a(n-1) - 4*a(n-2) + 9*a(n-3) + 3*a(n-4) for n >= 5.
Comments