A292488 p-INVERT of the odd positive integers, where p(S) = 1 - S - 5 S^2.
1, 9, 52, 261, 1323, 6814, 35077, 180261, 926348, 4761289, 24472527, 125783886, 646502873, 3322895889, 17079026852, 87782799261, 451186103523, 2319006747614, 11919233055677, 61262485125261, 314876977751548, 1618404981969089, 8318279426249127
Offset: 0
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (5, -2, 13, 5)
Programs
-
Mathematica
z = 60; s = x (x + 1)/(1 - x)^2; p = 1 - s - 5 s^2; Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A005408 *) Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A292488 *) LinearRecurrence[{5,-2,13,5},{1,9,52,261},30] (* Harvey P. Dale, Jul 31 2025 *)
-
PARI
x='x+O('x^99); Vec(((1+x)*(1+3*x+6*x^2))/(1-5*x+2*x^2-13*x^3-5*x^4)) \\ Altug Alkan, Oct 03 2017
Formula
G.f.: -(((1 + x) (1 + 3 x + 6 x^2))/(-1 + 5 x - 2 x^2 + 13 x^3 + 5 x^4)).
a(n) = 5*a(n-1) - 2*a(n-2) + 13*a(n-3) + 5*a(n-4) for n >= 5.
Comments