A292538 Lucas-Carmichael numbers of the form k^2 - 1.
399, 2915, 7055, 63503, 147455, 1587599, 1710863, 2249999, 2924099, 6656399, 9486399, 14288399, 19289663, 25603599, 26936099, 28451555, 31270463, 32148899, 45158399, 49280399, 71368703, 91011599, 105884099, 111513599, 144288143, 146894399, 150405695, 152028899, 175827599
Offset: 1
Keywords
Links
- David A. Corneth, Table of n, a(n) for n = 1..2391 (terms <= 4*10^17; first 164 terms from Amiram Eldar)
- Samuel S. Wagstaff, Ramanujan's taxicab number and its ilk, The Ramanujan Journal, Vol. 64, No. 3 (2024), pp. 761-764; ResearchGate link, author's copy.
Programs
-
Maple
filter:= t -> andmap(f -> f[2]=1 and (t+1) mod (f[1]+1) = 0, ifactors(t)[2]): select(filter, [seq(k^2-1, k=3..10^5)]); # Robert Israel, Sep 24 2017
-
Mathematica
lcQ[n_] := !PrimeQ[n] && Union[Transpose[FactorInteger[n]][[2]]] == {1} && Union[Mod[n + 1, Transpose[FactorInteger[n]][[1]] + 1]] == {0}; Select[Range[2, 10^4]^2 - 1, lcQ]
Extensions
More terms from David A. Corneth, Aug 26 2023
Comments