A292542 Number of 4-cycles in the n-Sierpinski tetrahedron graph.
3, 39, 156, 624, 2496, 9984, 39936, 159744, 638976, 2555904, 10223616, 40894464, 163577856, 654311424, 2617245696, 10468982784, 41875931136, 167503724544, 670014898176, 2680059592704, 10720238370816, 42880953483264, 171523813933056, 686095255732224
Offset: 1
Links
- Eric Weisstein's World of Mathematics, Graph Cycle
- Eric Weisstein's World of Mathematics, Sierpinski Tetrahedron Graph
- Index entries for linear recurrences with constant coefficients, signature (4).
Programs
-
Mathematica
Table[If[n == 1, 3, 39 4^(n - 1)], {n, 30}] Join[{3}, LinearRecurrence[{4}, {39}, 20]] CoefficientList[Series[-3 (1 + 9 x)/(-1 + 4 x), {x, 0, 20}], x]
Formula
a(n) = 39*4^(n - 2) for n > 1.
a(n) = 4*a(n-1) for n > 2.
G.f.: -3*x*(1 + 9*x)/(-1 + 4*x).