cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A292548 Number of multisets of nonempty binary words with a total of n letters such that no word has a majority of 0's.

Original entry on oeis.org

1, 1, 4, 8, 25, 53, 148, 328, 858, 1938, 4862, 11066, 27042, 61662, 147774, 336854, 795678, 1810466, 4228330, 9597694, 22211897, 50279985, 115489274, 260686018, 594986149, 1339215285, 3040004744, 6823594396, 15416270130, 34510814918, 77644149076, 173368564396
Offset: 0

Views

Author

Alois P. Heinz, Sep 18 2017

Keywords

Examples

			a(0) = 1: {}.
a(1) = 1: {1}.
a(2) = 4: {01}, {10}, {11}, {1,1}.
a(3) = 8: {011}, {101}, {110}, {111}, {1,01}, {1,10}, {1,11}, {1,1,1}.
		

Crossrefs

Row sums of A292506.
Column k=2 of A292712.
Cf. A027306.

Programs

  • Maple
    g:= n-> 2^(n-1)+`if`(n::odd, 0, binomial(n, n/2)/2):
    a:= proc(n) option remember; `if`(n=0, 1, add(add(d*
          g(d), d=numtheory[divisors](j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..35);
  • Mathematica
    g[n_] :=  2^(n-1) + If[OddQ[n], 0, Binomial[n, n/2]/2];
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d*
         g[d], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n];
    Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Apr 30 2022, after Alois P. Heinz *)

Formula

G.f.: Product_{j>=1} 1/(1-x^j)^A027306(j).
Euler transform of A027306.