A292560 Expansion of Product_{k>=1} 1/(1 + x^(k^3)).
1, -1, 1, -1, 1, -1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 1, -1, 1, -1, 1, -1, 0, 0, 0, -1, 1, -1, 1, -1, 2, -2, 2, -1, 1, -1, 1, -1, 0, 0, 0, -1, 1, -1, 1, -1, 2, -2, 2, -1, 1, -1, 2, -2, 1, -1, 1, -2, 2, -2, 1, -1, 1, -1, 1, 0, 0, 0, 1, -1, 1, -1, 1, -2, 2, -2, 1, -1, 1, -2, 2, -1, 1, -1, 2, -2, 2, -1, 1
Offset: 0
Keywords
Links
Programs
-
Mathematica
nmax = 100; CoefficientList[Series[Product[1/(1 + x^(k^3)), {k, 1, Floor[nmax^(1/3)] + 1}], {x, 0, nmax}], x]
Formula
G.f.: Product_{k>=1} 1/(1 + x^(k^3)).
a(n) ~ (-1)^n * exp(2 * (Gamma(1/3) * Zeta(4/3))^(3/4) * n^(1/4) / 3^(3/2)) * (Gamma(1/3) * Zeta(4/3))^(3/8) / (8 * 3^(1/4) * sqrt(Pi) * n^(7/8)). - Vaclav Kotesovec, Sep 19 2017
Comments