cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A292565 Take 0, skip 3 * 1 + 1, take 1, skip 3 * 2 + 1, take 2, skip 3 * 3 + 1, ...

Original entry on oeis.org

5, 13, 14, 25, 26, 27, 41, 42, 43, 44, 61, 62, 63, 64, 65, 85, 86, 87, 88, 89, 90, 113, 114, 115, 116, 117, 118, 119, 145, 146, 147, 148, 149, 150, 151, 152, 181, 182, 183, 184, 185, 186, 187, 188, 189, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 265
Offset: 1

Views

Author

Seiichi Manyama, Sep 19 2017

Keywords

Examples

			   k|            A292564(n)^2          |            a(n)^2            |       Sum
   --------------------------------------------------------------------------------
   0|                              0^2                                     (=    0)
   1|                       3^2 +  4^2 =  5^2                              (=   25)
   2|               10^2 + 11^2 + 12^2 = 13^2 + 14^2                       (=  365)
   3|        21^2 + 22^2 + 23^2 + 24^2 = 25^2 + 26^2 + 27^2                (= 2030)
   4| 36^2 + 37^2 + 38^2 + 39^2 + 40^2 = 41^2 + 42^2 + 43^2 + 44^2         (= 7230)
    | ...
Row 3 is proved by the following:
(25^2 - 24^2) + (26^2 - 23^2) + (27^2 - 22^2) = 49*1 + 49*3 + 49*5 = 7^2*3^2 = 21^2.
Row k is proved by the same way.
		

Crossrefs

Programs

  • Mathematica
    Block[{s = Array[{# - 1, 3 # + 1} &, 12], r}, r = Range@ Total@ Flatten@ s; Map[Function[{a, b}, {First@ #, Set[r, Drop[Last@ #, b]]} &@ TakeDrop[r, a]] @@ # &, s][[All, 1]] // Flatten] (* Michael De Vlieger, Sep 25 2017 *)

Formula

Sum_{n = (k-1)*k/2+1 .. k*(k+1)/2} a(n)^2 = Sum_{n = k*(k+1)/2 .. (k+1)*(k+2)/2-1} A292564(n)^2 = A059255(k) for k > 0.
a(n) = n + 4 + (3k^2 + 11k)/2 where k = floor((sqrt(2*n) - 1/2)). - Jon E. Schoenfield, Sep 30 2017